Kinetic Monte Carlo simulations of protein folding and unfolding
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ABSTRACT

We report here kinetic Monte Carlo (KMC) studies of
two problems: (1) Unfolding of the protein titin under
mechanical tension and (2) The formation of native
contacts in the process of folding of small, single domain
proteins. Both cases involve long time scales and cannot be
directly addressed by molecular dynamics methods. In
order to overcome this time scale problem we use a kinetic
Monte Carlo method, in which elementary processes (such
as the formation of a single native contact or dissociation of
a hydrogen bond) are viewed as first order processes whose
rates are calculated from a crude microscopic model. Our
simulations explain the observed behavior in unfolding of
titin when pulled by a force and the correlation between the
folding rate of single domain protein and the number of
contacts in the folded state.
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1 INTRODUCTION

Recent advances in single molecule manipulation
techniques (such as atomic force microscopy) allowed
researchers to stretch single protein chains by applying
forces at their ends. The experiments measure the
connection between the pulling force and the length of the
protein. The data reveals the force under which the folded
domains in the protein fall apart and also gives information
regarding the elasticity of the polypeptide chain.

A second problem we study is the folding rate of
simple single domain protein, in an attempt to explain why
the folding rate depends on the number of contacts in the
native (folded) state and what the nature of this dependence
is.

The kinetics in both problems takes place on a
time scale that is too long for molecular dynamics
calculations. Because of this we treat them by performing
kinetic Monte Carlo simulations on models that attempt to
represent the physics of the problem semi-quantitatively.
We use microscopic models to calculate the rate constants
of the elementary processes involved in protein folding and
unfolding, then use these rate constants as input in a kinetic
Monte Carlo algorithm that is capable of dealing with long
time scales. By using this approach, we have been able to
directly compare our simulation results with experiment.

2 TITIN UNFOLDING

Several groups have been able to pull a single titin
molecule and measure the dependence of the force on the
molecule’s extension'*. The AFM pulling experiment
performed on a single titin molecule is schematically
depicted in Fig. 1.
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Figure 1. An AFM titin pulling experiment

The titin molecule is attached to a substrate at one end and
to a cantilever at the other. The substrate is moved, as
indicated in Fig. 1, at a constant velocity v. A typical
dependence of the force on time™* is schematically shown
in Fig. 2.
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Figure 2. Force vs. time in a titin pulling experiment

The titin molecule consists of immunoglobulin-
like domains (Ig) arranged in a sequence along the chain’.
Every time a domain is unfolded under the mechanical
load, the chain becomes longer and the force drops exerted
on the cantilever drops: The saw teeth in Fig. 2 indicate
sequential unfolding of the Ig domains. The peak force, at



which unfolding takes place, was found to be a random
variable.

Molecular dynamics studies performed by the
Schulten group™® indicate that unfolding of an Ig domain
requires breaking of six hydrogen bonds, as shown in Fig.
3.

Figure 3. An Ig27 domain. The numbered lines show
the approximate positions of the hydrogen bonds holding
the domain together

In order to model the unfolding of a single Ig domain in
the titin molecule, we have assumed’ that each of the six
hydrogen bonds in the domain can be described by a
double-well potential, the two wells representing the intact
and broken bond. The rate constants of breaking and
reforming a hydrogen bond are given by

kp(f) = v exp[-Up(f)/ksT]
(D)
kr(f) =V exp['Ur(f)/kBT]

where Uy(f) and U(f) are the force f dependent barriers to
breaking and unfolding. The kinetic Monte Carlo method
generates bond breaking/formation events with the
probabilities proportional to the rate constants defined by
Egs. (1). We note that while we use the name hydrogen
bond, the model works regardless what the nature of
bonding is. The domain breaks as soon as the last hydrogen
bond is broken. If n is the number of intact bonds in the Ig
domain, then n(t) is a random walk that is terminated (the
domain is ruptured) as soon as n becomes zero. A typical
dependence n(t), generated by our kinetic Monte Carlo
simulation, is shown in Fig. 4.
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Figure 4. A KMC simulation of a domain unfolding.
This, and many other similar figures, suggest that the
domain unfolds irreversibly when the number n of bonds
drops below a certain critical value. This behavior results
from the fact that bonds act in parallel and the force acting
on each bond depends on the number of bonds present, f =
F/n, where F is the total force applied to the chain. Thus f
increases each time a bond is broken.

The probability distribution of the unfolding force,
computed by KMC, is shown in Fig. 5 for a pulling speed
of 1 pm/s
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Figure 5. The unfolding force distribution for Ig domains

Force induced unfolding of a titin molecule that
includes N Ig domains was simulated using a
“bootstrapping procedure” as follows: Let o(t) be the
probability that a domain does not unfold up to the time t.
Then, for a chain of N domains, the survival probability
(i.e., the probability that none of them unfolds) is

S(t) = o(t)" 2
and the probability distribution for the unfolding time
p(t) dt=-S’(t) dt=-N o) o’(t) dt (3)
Thus it is sufficient to know the survival probability o(t) for

a single domain to simulate the kinetics of the entire titin
molecule. An interesting implication of Eq. 3 is that the



unfolding time (and therefore force) distribution depends on
the number of the domains present. Indeed, our simulations
explain the fact that the average unfolding forces where
found lower for short recombinant titin fragments (with N=
4-8)’ compared to those in the titin molecule®.

3 KMC SIMULATIONS OF PROTEIN
FOLDING

Plaxco, Simons, and Baker’ made the intriguing
observation that the observed rate constant of folding of
small, single domain proteins is correlated with the
topology of the native state, quantified in terms of its
“contact order”. To understand the origins of this behavior,
we have studied a kinetic model, in which protein folding is
viewed as formation of native contacts, as shown in Fig. 6.
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Figure 6. Native contact formation in a chain

Following refs.”', we define a contact in a protein as two
residues being within a contact radius a from one another
and being separated by more than C residues along the
chain. A typical choice of these two parameters is a = 64,
C =12, the results being only weakly dependent on them.

To study the kinetics of the model, one needs a
way of calculating the rate constants of contact formation
and dissociation. If one uses the Gaussian chain
approximation to estimate these, then the rate constant for
diffusion controlled formation of a contact between
residues i and j is given by'":

k' = ——— )
()

Here D is the diffusion coefficient and <rij2 > is the mean
square distance between residues i and j. The latter depends
on the presence of other contacts in the chain. For example,
forming contact @ in Fig. 6 shortens the loop required to
form the contact c.

A contact that has been formed can dissociate
again. The rate of dissociation in our model is given by:

ki = Vv exp( &) %)

where g;; is the contact binding energy.

Fig. 7 shows a typical result of simulations, the
folding time probability distribution for a model chain that
forms the contacts {{5,37}, {25, 51}, {17, 41}, {23, 13},

{57, 45}, {1, 33}, {9, 29}}. Except for short times, the
observed kinetics are close to exponential'®, which is
consistent with the experimental observation that small,
single domain proteins exhibit first-order folding

kinetics™!.

pith
0002 |

Gl | :

|
I L
M |

1 L

"
.
il I
2000 1K} HEH KA

Lh ]

Figure 7. Probability distribution of the folding time for a
gaussian chain with N=7 contacts.

We further found that many features of our model
are reproduced within a mean-field-type approximation, in
which one does not distinguish among specific contacts but
rather tracks their total number m. This leads to a model
that has the following properties.

1. The total free energy of a chain with m contacts is
given by:

F(m)=Fy+mAF,m=1,2,...,N (6)

Here AF is the free energy cost for the formation
of a single contact and Fy is the excess free energy
required to form the first contact.
2. The rate limiting step of folding is the formation of the
N-th contact, where N is the total number of native
contacts

By employing the above two assumptions, the model can be
(approximately) solved analytically’ to find that the
effective folding rate is given by:

k=N k™ exp[-BF] exp[-BN AF] @)

where k™ is the contact dissociation rate (5) assumed here to
be the same for all contacts.

Eq. 7 reproduces the folding rates of small single
domain proteins well'’. We fitted the dependence of the
experimental folding rates on the number of native contacts
N by Eq. 7 for a data set of 24 structurally unrelated small
single domain proteins studied in*'’. The parameters found
from this fit are'’:

AF =0.144 kgT



kg exp[-BF(] = 3828 5!

For the proteins studied, Eq. 7 predicts their folding times
to within an order of magnitude. Further, the contact order
as defined by Plaxco, Simons and Baker’, is nearly
proportional to the number of native contacts thus
suggesting an explanation to the empirical correlation found
by those authors.

Simulations are underway in our groups to

understand the microscopic basis of the assumptions, which
lead to Eq. 7.
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