Theoretical Strength and Onset of Yielding in Nanoindentation
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ABSTRACT

Quantum-mechanical (ab initio) approach for deter-
mining theoretical (ideal) tensile and shear strength in
metals and intermetallics is briefly outlined and, as an
example, tensile test for defect-free MoSi, is simulated.
Theoretical values of tensile and shear strength are com-
pared with those obtained from loading of whiskers and
from nanoindentation experiments. As nanoindenta-
tion tests can sample defect-free volumes, the onset of
yielding should correspond to theoretical shear strength.
Possible sources of discrepancies between the measured
maximum shear stress in nanoindentation experiments
and theoretical values as well as corresponding correc-
tions are discussed. The calculated or measured values
of theoretical strength may subsequently serve as in-
put parameters to a quantitative and predictive model,
based on the properties of dislocation interactions, that
describes the relationship between the yield behaviour
and length-scale effects in the nanoscale regime.
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1 INTRODUCTION

Nanoindentation has emerged in recent years as the
most important probe, both in basic research and indus-
trial applications, for investigation of mechanical prop-
erties over dimensions ranging from a few nanometers to
a few microns. Numerous experiments using this tech-
nique have identified a remarkable phenomenon specific
to this regime, namely that the onset of yielding at the
nanoscale appears to be controlled by homogeneous nu-
cleation of dislocations in the small volume of material
subject to loads approaching the theoretical strength,
i.e. the strength of an ideal (defect-free) solid. This is
due to the fact that the contact area under the nanoin-
denter is almost always dislocation-free because in well-
annealed crystals the average dislocation spacing is of
the order of 1 um while the contact area is of the order
of 100 nm.

The estimate most often used for this quantity is
G/2x, where G is the shear modulus on the appropriate
slip plane. In many materials, the shear stress at the
onset of yielding differs from this estimate by a factor
of 2-3. Consequently, in order to develop a quantitative
theory the results of which can be directly compared

with experiments, we need a more reliable estimate of
the theoretical strength.

Recently, determination of theoretical strength be-
came possible using quantum-mechanical (ab initio or
first-principles) electronic structure calculations based
on density functional theory. It was our group at the
Institute of Physics of Materials in Brno who performed
the very first fully relaxed ab initio simulation of a ten-
sile test and obtained the theoretical tensile strength in
tungsten [1]. The calculated results compared very well
with the experiment performed on tungsten whiskers by
Mikhailovskii et al. [2]. Further, we calculated ideal
tensile strength in NiAl [3] and Cu [4]. These results
found a very good response in the international com-
munity and established a basis for further calculation of
ideal strength in Al [5], [6], Cu [6], and (8-SiC [7]. Very
recently, we have calculated the theoretical strength in
transition metal disilicides MoSiz and WSi, [8].

For the nanoindentation experiments, the theoretical
shear strength of the material is more relevant. While it
cannot be easily measured experimentally, it may be also
determined by means of ab initio electronic structure
calculations. Here more computational effort is needed,
as several independent components of the strain tensor
must be relaxed to establish fully uncostrained condi-
tions. Till now, such calculations were performed for
Al and Cu [6], W [9] and Mo [10]. Non-relaxed ab ini-
tio results for numerous metals may be found in [11];
as shown in [6], [10], for Al and Cu the relaxed shear
strengths are much lower than unrelaxed values. To the
best of our knowledge, no ab initio calculations of theo-
retical shear strength were accomplished for intermetal-
lic compounds. Our own calculations of this quantity
are in progress.

The present contribution gives an account of ap-
plications of quantum-mechanical electronic structure
calculations to the problem of theoretical strength in
metals and intermetallics. First, we briefly describe
the way of simulating the tensile test, the calculation
of shear strength, and the electronic structure calcula-
tional method. Then we shortly discuss the theoretical
strength values in a number of elemental metals and
intermetallics and compare them with available experi-
mental data, both from measurements on whiskers and
from nanoindentation experiments.



2 TENSILE TEST SIMULATION
AND CALCULATION OF SHEAR
STRENGTH

The tensile strength of materials is usually limited
by presence of internal defects, mostly dislocations. In
a defect-free crystal, the tensile strength is several or-
ders of magnitude higher and is comparable with elastic
moduli. Most of the calculations of theoretical strength
is based on empirical potentials with the parameters ad-
justed to experimental data. However, these experimen-
tal data usually correspond to the equilibrium ground
state. Therefore, the semiempirical approaches adapted
to the equilibrium state may not be valid for materials
loaded close to their theoretical strength limits.

In the first-principles (ab initio) electronic structure
calculations, we start from the fundamental quantum
theory. The only input is atomic numbers of the con-
stituent atoms and, usually, some structural informa-
tion. This approach is reliable even for highly non-
equilibrium states.

To simulate the tensile test, we first calculate the to-
tal energy of the material in the ground state. Then, in
the second step, we apply some elongation of the crys-
tal along the loading axis (in the [001] direction, for
example; the loading axis is denoted as axis 3) by a
fixed amount e3 that is equivalent to the application of
a tensile stress o3. Subsequently, we fully relax both
the stresses 01 and o2 in the directions perpendicular to
the axis 3 as well as the internal structure parameters,
if any. In this way, we find the contractions £; and e2
which correspond to zero tensile stresses o; and o, and
the new values of internal parameters.

Let us dicuss the case of transition metal disilicides
MoSi; and WSiy loaded along the [001] axis in more
detail. Their C11, structure is tetragonal and keeps
its tetragonal symmetry during this uniaxial loading.
Therefore, o1 = 02, and we minimize the total energy as
a function of lattice parameter a¢ and internal structure
parameter A (defined e.g. in [12], [13]).

The tensile stress o3 is then given by [14]
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where F is the total energy per repeat cell, (2 is the vol-
ume of the repeat cell, ¢ is a dimension of the repeat
cell in the direction of loading, A = /c is the area of
the basis of the repeat cell in the plane perpendicular
to the loading axis, and ¢g is the value of ¢ in the un-
deformed state. The inflexion point in the total energy
dependence yields the maximum of the tensile stress;
if some other instability does not occur before reaching
the inflexion point, it also corresponds to the theoretical

tensile strength.

The theoretical shear strength is calculated analo-
gously. A shear deformation is applied along a chosen
direction and plane (e.g. along a (112) in a {111} plane
in fcc metals) and the total energy is calculated as a
function of the magnitude of this deformation. The

maximum slope of this curve then determines the theo-
retical shear strength for the chosen mode of shearing.
It is again important to allow relaxation of five strain
components other than imposed shear and of internal
structure parameters, if any.
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Figure 1: Variations of (a) total energy, E, per formula
unit (f.u.), and (b) tensile stress o3 during the simula-
tion of the tensile test along the [001] direction in MoSis.
Here Ej is the ground-state energy and €3 is the strain.
The position of the inflexion point in the energy depen-
dence and the maximum of the tensile stress are denoted
by a thin vertical line.

3 DETAILS OF THE
CALCULATIONS

In order to obtain reliable ab initio total energies
of materials during tensile test simulations and calcula-
tions of shear strength, the methods using a shape ap-
proximation of the crystal potential (for example spheroi-
dization, as in the LMTO-ASA method or in standard
KKR and APW approaches) are not adequate [1]. In-
stead, full-potential treatments must be employed. In
this study we utilized the full-potential linearized aug-
mented plane waves (FLAPW) code described in detail
in [15]. The electronic structure calculations were per-
formed self-consistently within the local density approx-
imation (LDA).



Table 1: Theoretical tensile strengths oy, calculated ab initio

material structure orientation of the Oth reference
of the loading axis (GPa)
[001] 28.9 [1]
W A2 001 29.5 9
111 40.1 1
110 54.3 1
Al Al 001 12.1¢ 5
111 11.05 5
001 33
Cu Al [110] 31 4]
111 29
NiAl B2 001 46 3], 4
111 25 3], [4
3-SiC B3 (30) 001 101 7
111 50.8 7
MoSi, Cl11, 001 37 8
WSi, Cl11, [001] 38 [8]

¢ A value of 12.54 GPa would be obtained from the slope of the strain dependence of total energy at

the inflexion point [5].

In our calculations, crystal lattices are severely dis-
torted and some atoms may move very close together.
Therefore, the muffin-tin radii must be sufficiently small
to guarantee non-overlapping of the muffin-tin spheres
at every stage of the test. For example, in transition
metal disilicides, we use the muffin-tin radii equal to
2.3 a.u. for transition metal atoms and 2.1 a.u. for
silicon. These are kept constant in all calculations pre-
sented here. The product of muffin-tin radius and the
maximum reciprocal space vector, Ryrrkmasz, is equal to
10, the maximum [ value for the waves inside the atomic
sphere, [,,42, and the largest reciprocal vector G in the
Fourier expansion of the charge, G4z, are set to 12 and
15, respectively, and the number of k-points in the first
Brillouin zone is equal to 2000.

4 RESULTS AND DISCUSSION

In Fig. 1, we display, as an example, the depen-
dences of total energy E and tensile stress o3 on the
strain €3 in the [001] direction in MoSi». The total
energy has a parabolic shape around the minimum; it
becomes almost flat in the neighborhood of the inflex-
ion point corresponding to the maximum of the tensile
stress. The variations of the internal parameter A and
of bond lengths may be found in [8], [16].

The values of the theoretical tensile strength of MoSis
and WSi, are presented in Table 1 which also shows all
ab initio values of the theoretical tensile strength calcu-
lated up to now. All these calculations included relax-
ations of perpendicular dimensions of the crystal and, if
applicable, of internal structure parameters. Most of
these values correspond to the inflexion point at the
strain dependence of total energy. The oy, value of
about 29 GPa for [001] orientation of tungsten (Table 1)

isin a very good agreement with the experimental result
of (24.7£3.6) GPa obtained for a whisker grown along
the [110] axis [2]. Our theoretical strength for [110] load-
ing is, however, too high (54.3 GPa). This suggests that
the material probably breaks down due to some other
instability before reaching the inflexion point and, there-
fore, the theoretical tensile strength will be lower than
that given in Table 1. It is nearly certain that this is also
the case of Cu where the experimental ideal strengths
are about an order of magnitude lower than the cal-
culated results [4], [17]. Semiempirical calculations [18]
suggest indeed that, for the [001] direction, the tetrago-
nal shear modulus becomes zero far before reaching the
inflexion point. It may be expected that similar insta-
bilities will occur in the [110] and [111] orientations as
well. This will be a subject of further investigations.

Theoretical shear strengths under fully relaxed con-
ditions were calculated for Al, Cu, W and Mo (the re-
sults are summarized in [10]). Krenn et al. [19] per-
formed an analysis of tensile and shear strengths in bee
metals. They argue that there are nearly identical shear
strengths on the shear systems (111){110}, (111){112},
and (111){123}. This is in agreement with the ab ini-
tio values of theoretical shear strengths in W which are
within the interval (17.6; 18.2) GPa [9].

Although the values of the measured maximum shear
stress in nanoindentation experiments depend, to a cer-
tain extent, on the tip radius, it is remarkable how well
they sometimes agree with the simple estimate of G/27.
For example, Bahr et al. [20] report the measured max-
imum shear stress in W to be 28.6 GPa, whereas G/2w
equals to 26 GPa. Further examples include Cu, ¢-BN,
MosSiBs, TizAl, and NiAl [21], where the differences
between the measured maximum shear stress and G /27
are not very large.



However, the ab initio values of shear strength should
be more reliable than G/2m. Nevertheless, in tungsten,
the experimental value of 28.6 GPa does not fit into the
interval of (17.6; 18.2) GPa found in the calculations.
Roundy et al. [9] explain this disagreement by means
of triaxiality of the load at yield and by a limited appli-
cability of the Hertz solution for the elastic strain field
used in the analysis of the experimental data. Includ-
ing the effect of non-linearity of stress-strain relation at
high strains, they introduce a simple correction of exper-
imental data (multiplication by a factor of 2/7 = 0.64),
which improves the agreement of experimental and cal-
culated values. Krenn et al. [22] performed a com-
puter simulation including both triaxiality of the load
and non-linearity of stress-strain relation, arriving at
nearly perfect agreement of experimental and theoreti-
cal shear strength in W and Mo.

The calculated or measured values of theoretical (ide-
al) strength may subsequently serve as input parame-
ters to a quantitative and predictive model, based on
the properties of dislocation interactions, that describes
the relationship between the yield behaviour and length-
scale effects in the nanoscale regime. This approach will
complement and enhance the strain gradient models of
continuum mechanics that are currently state-of-the-art
when dealing with deformation of materials subject to
inhomogeneous loads on nano- and microscale. It will
contribute to a deeper understanding of the onset of
yield in nanoindentation and, in general, of some other
aspects of deformation in materials subject to large in-
homogeneous loads. This work is in progress.

5 CONCLUSIONS

We have demonstrated that, using the first-principles
electronic structure calculations, theoretical tensile and
shear strengths of single crystals may reliably be cal-
culated. No adjustable parameters or interatomic po-
tentials are introduced — the calculations are based on
fundamental quantum theory in the local density ap-
proximation. In this paper, we have shown the results
of ab initio simulation of tensile test in MoSis, reviewed
the values of ideal tensile and shear strengths calculated
ab initio under fully relaxed conditions up to now and
discussed their applicability in explaining of nanoinden-
tation experiments.
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