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ABSTRACT

    The mechanical properties of nanoscale materials are
studied using the molecular dynamics and lattice Green’s
function methods. The initial atomic structures of the
dislocations and cracks are determined both from the elastic
solutions as well as from those by lattice Green’s function
method for the infinite systems. Firstly, we calculate the
Green function for the defective lattice, with dislocation
and crack, by solving the Dyson equation, appropriate for
absolute zero temperature. The thermal expansion and the
temperature dependence of the interatomic force constants
are determined by using the statistical moment method and
they are taken into account in the lattice Green's functions.
The strength and fracture properties are then investigated
for the nanocrystalline materials like semiconductor
quantum wire and carbon related materials like graphenes
and nanotubes. The O(N) tight-binding molecular dynamics
(TBMD) method is used to analyze the reconstruction of
atomic bonding near the crack tip as well as the cleaved
surface. We compare the mechanical properties of
nanoscale materials with those of corresponding bulk-size
materials.
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1. INTRODUCTION

    Fracture behaviors of materials depend sensitively on the
temperature as well as the microscopic materials
parameters, like elastic constants, surface tension, and
interatomic force laws at the cohesive region near the crack
tip [1-3]. Recently, there has been a great interest in the
study of fracture of brittle materials such as semiconductors
and ceramic materials [3-5]. One of the reasons is the
engineering need to improve the fracture toughness of the
ceramic materials. Furthermore, in these materials the
plastic deformation associated with crack extension is
effectively absent and does not play a significant role.
    It is the purpose of the present paper to investigate the
crack extension process of nanoscale materials with the use

of the atomistic theoretical scheme, with particular
emphasis on their size and temperature dependence. There
exists at present two basic models for the atomistic
calculation of the crack properties. The model more widely
used employs a molecular dynamics approach [5,6]. The
possible problems arising from this model are that (i) it
tends to predict atomic configurations of local energy
minimum condition and (ii) it uses the artificial imposition
of an elastic continuum displacement field at a fixed
distance from the defect (crack) center. An alternative
model based on the lattice statistics approach has been used
less extensively. This method was developed by Matsubara
and Kanzaki [7,8]. It has been applied to cracks by
Thomson et al. [9], Esterling [10] and Thomson and
coworkers [11-14]. The difficulty in applying this approach
to crack calculation is the introduction of an anharmonic
region wherein the atoms must be treated by taking the
details of the interatomic chemical bonding into
consideration.
    In the present paper , we shall use the lattice Green’s
function method taking into account the temperature
dependences of lattice spacing and the resulting changes in
the interatomic force constants. The full atomic relaxation
calculations have been performed by using the O(N) tight-
binding molecular dynamics (TBMD) methods. We shall
show that the essential fracture behavior of the nanoscale
materials can be analyzed within the framework of the
present atomistic and electronic theories.

2. PRINCIPLE OF CALCULATIONS

2.1 Cracked-lattice Green’s function

    We introduce a crack in the lattice, where the atomic
bonding between the atom pair facing one another across
the cleavage plane is annihilated. Then the force constant
matrix ΦΦΦΦ* of the cracked lattice is obtained from that of the
perfect crystal by introducing the force terms on the
cleavage surface that annihilate the bonds there. Thus ΦΦΦΦ*
can be written formally as [11-14]

, Φ−Φ=Φ∗ δ (1a)



δ [ ] facescrack Φ=Φ . (1b)

The formal solution of the problem is given by the Dyson
equation [11]

* * GGGG Φ+= δ , (2)

together with the “master equation” u=G*F for the Green’s
function, where u and F represent the displacement and
external force vectors, respectively.
    More precisely, the lattice Green’s functions are defined
as the inverse of the force constant operator ΦΦΦΦ∗  defined by
the equations of equilibrium for the lattice:
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The constant elements in the tensor ΦΦΦΦ    are just the spring
constants connecting a reference atom at position l to its
neighbors l’. In deriving the cracked-lattice Green’s
function, our starting point is always the perfect-lattice
Green’s function. We use quantities with asterisks to denote
the cracked lattice and quantities without asterisks to denote
the perfect lattice as in the above eqs.(1) and (2). Because of
the translational symmetry of the perfect lattice,
ΦΦΦΦ (l,l’)=ΦΦΦΦ (l-l’), ΦΦΦΦ     becomes a function of only one lattice
variable l-l’, the position relative to a reference atom. Thus
in the Fourier representation the transform of the force
constant matrix of cubic crystal is given as
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In the above eqn. (6) the sum is over the neighbors of the
reference atom l. It is therefore a finite sum over the
neighbor shell of the reference atom and can be written in a
straightforward manner. Thus the Green’s function for the
perfect lattice is also obtained in Fourier space;

)()( 1 qqG −= φ . (7)

In this equation, ΦΦΦΦ    is a tensor quantity which can be written
as a matrix by proper numbering of its elements, and the
inverse is the inverse of the matrix.
     We use the constraint that the sum of all the forces acting
on each atom must vanish, i.e. from eqn.(3)

0* =Φ++ ufF . (8)

Here f denote forces which are exerted by atoms whose
bonds have been stretched into their non-linear regimes.
The atomic displacements u are given by solutions of the
coupled equation

{ }ufGFGu ** += . (9)

After the appropriate Green functions have been
determined, the relaxation problem for the reconstituted
bonds in the cohesive zone, eqn. (9) above, is solved with
force laws appropriate to the problem. The force laws used
in the present calculations are obtained by TB electronic
theory.
    The calculated atomistic results of the fracture properties
of the nanoscale materials are compared with those of the
elasticity criterion [15,16]. The results of the present
atomistic simulations are given in terms of stress intensity
factors.

2.2 Treatment at finite temperature

    The present theory includes the temperature effects on the
crack extension events by explicitly taking into account the
changes in the lattice spacing and interatomic force
constants, which are important ingredients in the lattice
Green’ function approach. To derive the temperature
dependent lattice constants and interatomic force constants,
we use the moment method in the statistical mechanics
[17,18]. This method allows us to take into account
explicitly the anharmonicity effects of lattice vibration
within the fourth order moment approximation.

2.3 O(N) TBMD method

    For performing the molecular dynamics simulations, we
use the total energy calculation procedure based on the TB
electronic theory. The total energy of the system is assumed
to be given by a sum of two terms [19,20]:
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where Uel is the band structure energies εk for the occupied
states, and Urep represents the remaining repulsive energy
contribution. Here rij  is the separation of atoms i and j. The
repulsive potential φ(r) is taken to be short ranged and
varies exponentially with the interatomic distance. For
treating the nanoscale semiconductor crystallites, we will
use the minimal parameter generalized tight-binding
molecular dynamics (GTBMD) scheme of non-orthogonal
basis [19,20]. For the GTB scheme, the characteristic
equation to be solved is written in matrix form as

(H-EnS)Cn=0, (14)



where H  and S are the Hamiltonian and overlap matrixes,
respectively. Cn is the column vector of LCAO coefficients.
    For treating the lar ge-scale systems containing atoms
more than 1,000 atoms, we will use the nonorthogonal
density matrix (DM) scheme [21]. The DM in a
nonorthogonal basis is introduced by defining the two
quantities

11 −−= SXSX , XSXSXXSX 23 −=ρ , (15)

as alternative representation for the trial and physical DM,
respectively. In terms of X  and ρ  the energy functional is
written as

]')23[( HXSXSXXSXtr −=Ω . (16)

In order to achieve linear scaling, a cutoff radius (Rc) is
postulated beyond which all elements of the trial density
matrix are set to zero. This leads to a sparse density matrix.

3. RESULTS AND DISCUSSIONS

Firstly, we calculate the atomistic structures and

strength properties of the carbon nanowires, which are cut
in a shape of “belt”, the small nanographite ribbon, from
graphene sheets. The carbon nanowires without containing
defects show the sufficient elongation, i.e., “superplasticity”
associated with the structural phase transformation like the
Peierls transition of one-dimensional (1D) system. In
contrast, the carbon nanowires including surface defects
like cracks show very brittle fracture.
    The tensile tests are also performed for larger quasi-1D
systems of (Sim)n and (Cm)n, m=6,24, ... .For instance, the
structure of (Si6)n is composed of six-memberd Si rings,
while those of (C24)n are the large structures composed of 7
six-membered rings. Under the tensile stress, this type of
nanowire exhibits the non-uniform deformation, and certain
necking occurs near the center region of the nanowire. The
appearance and location of the necking depends sensitively
on the size of the wire, and we have found the necking
occurs near the edge of wires and cracking in the central
region. In general, this type of nanowire fails at the notch
tip when it has been stretched by about a few percents. The
imposed strain rate was set to zero at the onset of crack
motion. As in the case of (Si6)n nanowires, the (C24)n

nanographites do not show the uniform deformation. Even
when the crack-like surface defects are absent in the initial
structure, the cleavage fracture occurs from the certain
surface sites between the two graphene layers.
    We have also studied cracks and dislocation in carbon
nanotube (CNT) and extended graphene sheets. The core
structure of the c-axis edge dislocation is characterized by
the five- and seven-membered rings in the 2D graphene
sheets. The core structure of the pair of the edge
dislocations is also characterized by a pair of pentagon-
heptagons. We have found that the pair of edge dislocations

are most stable in the configuration of "nearest-neighbour
position", and excess energies of the dislocations are further
reduced for this configuration. We have found that there are
no marked differences in the stability between the small
size graphenes with and without edge dislocations. This
indicates that the self-energy of the edge dislocation is very
small and may become even negative for the certain
clusters. Here, it is noted that the quite high energy barriers,
5.4eV for the related Stone-Wales transformation in C60

(which have closed surface) and 10.4eV barrier for bond
rotation in flat graphite, are reported in the literature. Then,
we come to the conclusion that the dislocation can be
generated spontaneously without sizeable activation energy
in the small semiconductor clusters.
    We now describe the results of the nanoplasticity,
uniaxial compression tests, of single wall CNT [19]. The
axial compression of a CNT is achieved by keeping the
edge atoms of the tube transparent to the forces generated in
the GTBMD method. The positions of the edge atoms are
moved axially inward at a fixed rate to compress the
nanotube. As external stress is applied to nanotubes, initial
linear elastic deformations are observed up to a certain
critical strain beyond which nonlinear responses set in. In
the nonlinear response regime, locally deformed structures
such as pinches, kinks, and buckles have been observed
[19]. Under the compressive stress, the nanotube exhibits
the drastic change of the bonding geometry, from a graphite
(sp2) to a localized diamond like (sp3) reconstruction, at the
critical stress (≈ 153GPa). In a recent experiment, large
compressive strains were applied to CNT dispersed in
composite polymeric films. It has been observed that there
are two distinct deformation modes, sideways buckling of
thick tubes and collapse/fracture of thin tubes without any
buckling. The compressive strain in the experiment is
estimated to be larger than 5%, and critical stress for inward
collapse or fracture is expected to be 100-150GPa for thin
tubes. Furthermore, it is worth noting that the simulations
by the GTBMD method are significantly different from the
previously reported results. For instance, the classical MD
simulations employing Tersoff-Brenner potential [26] for
the nanotube never plastically deform, even at larger
compression. Classical molecular dynamics (MD)
simulations, performed for single and multiwalled CNT
under tensile and compressive stresses show them to be
elastic.
    We have also investigated the plasticity of the single-wall
carbon nanotube containing dislocations. Upon the tensile
test, the CNT containing edge dislocation shows a stepwise
change of diameter near the core of the dislocations. We
have found that the CNT containing the edge dislocation
exhibits the critical stress far below (~80Gpa) than that
(153Gpa) of the CNT without dislocation. The c-axis edge
dislocation provides the efficient center for stress
concentration and gives rise to the failure of the CNT. The
details of the plastic flow and failure depend on the
symmetry of CNT and will be presented elsewhere.
    We have also studied the crack properties of the extended
graphene sheets. It has been found that the temperature



dependence of the force constants in the lattice is larger
than that of the unstable stacking energy. We have found
that the lattice trapping and stress intensity factors for
dislocation emission KIIe depend sensitively on the
temperature T, and they are decreasing function of T (for
bulk-size materials). The important factor for controlling
the dislocation emission is the temperature dependent
unstable stacking energy, in agreement with the results of
the absolute zero temperature [9].
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