Mechanical and Electronic Properties of Strained Layer Superlattices Studied by
Density Functional TB and Path Probability Methods

K. Masuda-Jindo™ and R. Kikuchi”

"Department of Materials Science and Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku,
Yokohama 226-8503, Japan
“"Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720-1760, U.S.A.

ABSTRACT

The atomic and electronic structures of semiconductor
heterostructures including steps, misfit dislocations and
interface disorder are studied by using the density-
functional tight-binding (TB) method. Atomic structures of
misfit dislocations both edge type 1/2 <110> (001) and
60°dislocations in the semiconductor heterostructures, like
Si-Ge superlattices and GaAs/Si systems are studied by
using order of N [O(N)] calculational method. The path
probability method (PPM) in the statistical physics is used
to study the influence of the interface disorder on the
electronic properties of the semiconductor heterostructures.
The fracture behavior of semiconductor heterostructures
under applied stress is also investigated and debonding
mechanism between the two different semiconductor layers
is discussed. It is shown that the junction relaxation
influences quite significantly on the electronic and
mechanical properties of semiconductor heterostructures.
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1. INTRODUCTION

The semiconductor heterostructures, quantum wells and
quantum dots are now of crucial importance for the modern
device technologies and material applications [1-4].
Nanoscale materials like fullerene, carbon nanotubes and
carbon related materials also provide us a wide variety of
applications, since their discovery, due to their unique
molecular structure, electronic and mechanical properties
[5-7]. Accordingly, the needs to work with large lattice
mismatched systems becomes increasingly important.
However, little is known about the atomistic mechanism of
strained layer epitaxial growth, e.g., thin film growth on
semiconductor substrate by molecular beam epitaxy (MBE)
[1]. In most lattice mismatched heteroepitaxial systems, the
initial growth mode consists of the formation of a two-
dimensional (2D) pseudomorphic layers. During the growth
of thicker layers, the increasing misfit strain gives rise to
the formation of coherent, dislocation-free three
dimensional (3D) islands or the formation of misfit
dislocations. In addition, it leads to intermixing near the
interface [8]. Recently, the strain driven intermixing has

been reported for Ge/Si(001) systems [1,3-4]. Atomic
species disorder at the interface is also an important
ingredient in discussing the properties of the semiconductor
heterostructures. It is noted that the semiconductor
heterostructures are never in equilibrium, and therefore the
junction profile can be changed by thermal means or by
elastic stresses [9-11].

The compositional intermixing in the semiconductor
heterostructures is undesirable for many devices based on
the heterostructures where a smooth and abrupt interface is
needed for the device performance. On the other hand,
because the interface intermixing alters the electronic and
optical properties sensitively, it may be used to tune the
optoelectronic quantum-well device parameters [9].
Interface intermixing may be enhanced by impurities or
point defects. For instance, Ga vacancies are known to
mediate diffusion on the group III zincblende sublattices,
and GaAs grown by MBE at low substrate temperatures is a
unique material containing a huge number of intrinsic point
defects, As antisites and Ga vacancies.

In the present study  , the atomic dif  fusion in the
semiconductor interface is investigated via the vacancy
mechanism of diffusion using the non-equilibrium
irreversible statistical mechanical approach, the path
probability method (PPM) [11]. The effective pair
interaction energies between the constituent atoms are
derived using the zeros-poles method [12] taking into
account the misfit strains at the interface. The so-called
zero-poles orbital peeling method is used within the
framework of TB theory and direct configurational
averaging method. The interface mixing influences quite
significantly the electronic and mechanical properties of the
semiconductor heterostructures. We will show that even for
the very early stage of the junction relaxation, the interface
electronic properties are strongly influenced by the
interface disorder. The PPM is applied to study the interface
disorder due to interdiffusion at the tetrahedrally
coordinated semiconductor heterostructures [9-11].

2. CALCULATIONAL METHOD AND
RESULTS

2.1 Density Functional TB Method

Our method of energetics for obtaining the
semiconductor heterostructures is based on the linear



combination of atomic orbitals (LCAO) scheme of Seifert,
Eschrig and Bieger [13-15], and we follow exactly their
procedure. In this approximation, the Kohn-Sham orbitals,
y;, of the system containing N atoms are expanded in terms
of Slater-type functions and spherical harmonics:
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Using the Slater-type orbitals, we perform a self-consistent
solution of the modified all-electron single-atom Kohn-
Sham equations:
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and determine the single-atom electron wave functions and
potentials. The additional term (r/rp)" appearing in V(r) in
the above eqn. (3) forces the wave functions to avoid areas
far from the nucleus, thus resulting in an electron density
that is compressed in comparison to the free atom.

Then, the Kohn-Sham equations of the condensed matter
systems are solved within a non-self-consistent treatment

Hy(x)=eg;(v); H=T+V,y(x) | (4)

where V(1) denotes the effective one-electron potential.

It is now well established that the total energy of the
system within the TB approach can be written with the
usual tight-binding equation as a sum over the ‘band-
structure’ energy and a short-range repulsive two-particle
potential [14-16]:
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where n; denotes the occupation number of Kohn-Sham
orbital i. The short-range repulsive energies V.,(R) are
determined as the difference of the cohesive energy
resulting from self-consistent total-energy calculations on
molecular and crystalline reference systems and the related
band-structure energy, Eggs, for different values of
interatomic distances R:

Viep(R)=EL5(R) = Egs(R) . (6)
The third term of eq.(5) is added for treating long-range

Coulomb interactions. From eqn. (5) one can now derive
the interatomic forces as

OE

Fy=-2L =12, N; j=123 (7)

acting on the nuclei.

Then, it is possible to apply the O(N) density matrix
method of non-orthogonal basis [17], and we will determine
the stable atomic configurations of the semiconductor
heterostructures.

2.2 Orbital Peeling Method

Before going into the details of the PPM, we firstly
estimate the effective pair interaction energies between the
constituent atoms in the system. The effective pair
interaction energies are very important quantities in
discussing the thermodynamic stability of the alloy
systems. For instance, it is known that crystalline Si;_Gey
mixture is a random alloy at room temperature, and this
mixture phase separates into Si-rich and Ge-rich phase
below the critical temperature 170<T.<240K [18]. It is
important (but difficult) to predict qualitatively whether the
tendency for phase separation is increased or decreased in
the strained superlattice or in the strained overlayers.
Recently, it has been pointed out that the amorphous
network of a Si-Ge mixture, under thermodynamic
equilibrium, does not phase separate. In the present study,
we investigate the segregation behavior in the
semiconductor heterostructure by calculating the ordering
energy € [=Eaatepp-2€a5] between the constituent atoms A
and B, using the tight-binding (TB) electronic theory and
orbital peeling method.

The change in the band structure energies AF due to
introduction of the local perturbation (point defect, or solute
atom) is calculated from the following formula [12]
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where Z; (Z2°) and Py (P%) are the zeros and poles of the

Green’s function Gi (or Gio) corresponding to a recursion
starting from coordination sphere i+l as if the previous
coordination spheres were absent. N, (or N°,) and N, (or
Nop) are the total numbers of zeros and poles of the lattice
including the local perturbation (or without it). We perform
the calculations of AF for a single solute as well as for a
pair of the solutes and derive the pair interaction energies
between them. The ordering energies of Si,Ge,, mixture
are calculated to be 19meV, and 35meV for the unrelaxed
and relaxed atomic configurations, respectively. The order
of magnitude of these € values may be compared with the
enthalpy of formation AH(a-Si;..Ge,)=-14meV/atom



(x=0.5) for the amorphous a-SiGe alloy at 100K calculated
by Tzoumanelas and Kelires [18].

In the present study , we investigate the electronic density
of states and the related physical properties of the
semiconductor heterostructures using the sp’d’s* model
[19,20] for the atomic configurations determined by the
molecular dynamics method. The TB parameters of sp’d’s*
model for elemental semiconductors are given in Table 1.

C Si Ge
a(A) 3.5668 543 5.6563
E, -1.0458 -2.0196 -3.2967
E, 7.0850 4.5448 4.6560
Eq 27.9267 14.1836 13.0143
E 38.2661 19.6748 19.1725
ssO -4.3882 -1.9413 -1.5003
s*s*0 2.6737 -3.3081 -3.6029
$*s0 -2.3899 -1.6933 -1.9206
spo 5.4951 2.7836 2.7986
$*po 5.1709 2.8428 2.8177
sdo -2.7655 -2.7998 -2.8028
s*do 23034 -0.7003 -0.6209
ppo 7.5480 4.1068 42541
ppTT 2.6363 -1.5934 -1.6510
pdo -2.1621 2.1073 22138
pdrt 3.9281 1.9977 1.9001
ddo -4.1813 -1.2327 12172
ddm 4.97779 2.5145 2.5054
ddo -3.9884 2.4734 2.138
A3 0.0 0.0195 0.1325

Table 1: Empirical TB parameters for group-IV
semiconductors of sp’d’s* model. The lattice constant a are
given in unit of A at room temperature; all other parameters
are given in units of eV with the energy zero at the valence
band maximum.

2.3 Path Probability Method

In general, the deposited films on the substrate allowing
interlayer mixing have lower surface energy than the
corresponding ones without interlayer mixing. In the
present study, we use the path probability method (PPM) to
study the interlayer mixing of the semiconductor
heterostructures.

In the PPM procedure, the path probability function
(PPF) is given in terms of the path variables, and then we
maximize the PPF to derive the most probable path
relations, to obtain the differential equations to describe
how the system changes in time. The PPF P is made of
three factors: P = Py, P, P5. P; is for the jump probabilities
including the common activation energy contribution, P, is
for the activation energy contribution, and it depends on the
initial energy level, and does not depend on the final

energy. P; is for the number of way, and needs careful
counting near the interface.

Summarizing the PPM calculations of the junction
relaxation of semiconductor heterostructures, we have
found the following characteristic features:

(i) At the initial stage of relaxation of a sharp profile,
overshooting of the profile occurs.

(i1) Near a sharp junction profile, the atom flux changes
sign during relaxation.

(iii)) Near the junction, the chemical potential gradient
becomes zero at a different time t* from that of the atom
flux. There is a time period in which atoms do not flow
downhill along the chemical potential gradient.

(iv) The local chemical potential gradient in non-
equilibrium state depends not only on the density gradient
but also on atomic pair correlation.

(v) While the overshooting is occurring, the free energy of
the entire system monotonically decreases.

(vi) The overshooting can be understood by a kinetic
reasoning as due to the repulsion of atoms.

For the relaxation process, we can suggest that the lar ge
and measurable interlayer mixing occurs at the Ge/Si(001)
heterojunction at the initial stage of the relaxation. For
heterojunctions like GaAs/AlAs(001) we allow cationic
intermixing, which very likely takes place during the
growth process. For treating the interdiffusion in the (001)
direction of zincblende structure, we simply take one of the
sublattices.

In addition, we have also found that the interface
disorder influences quite significantly the electronic and
mechanical properties of the semiconductor
heterostrucutres. Even for the very early stage of the
junction relaxation, i.e., after ~100 time steps, the electronic
states of the heterojunction are influenced quite
significantly by the interface disorder compared with those
of the sharp interface. We have found that when one of
atoms in the core of the misfit dislocations (both 1/2 <001>
(001) edge type and 60° shuffle set dislocation) in
GaAs/ZnSe(001) system is changed by interface mixing,
the dislocation induced gap state is drastically altered, it
even leads to the disappearance of the gap states [2]. This
indicates that the appearance of electronic bound states of
the misfit dislocations must be calculated on the basis of the
precise atomic geometries in the core region of the misfit
dislocations.

2.4 Lattice Green's Function Method

The fracture behavior of semiconductor heterostructures
under applied stress is investigated with the use of the
lattice Green's function method [21-23]. For simplicity, we
firstly consider the two-dimensional (2D) model system,
i.e., 2D square lattice with tetragonal distortion which is
deposited on the 2D square lattice substrate, rather than
treating the cumbersome diamond cubic or zincblende
crystals. The essence of the lattice Green's function method
for the fracture problem is summarized as follows.

We introduce a crack in the lattice, where the atomic



bonding between the atom pair facing one another across
the cleavage plane is annihilated. Then the force constant
matrix ®@* of the cracked lattice is obtained from that of the
perfect crystal by introducing the force terms on the
cleavage surface that annihilate the bonds there. Thus ®*
can be written formally as

P'=p-50, 9)

& =[] (10)

crack faces *

The solution of the crack problem is obtained by the Dyson
equation [21-23]

G*=G+G3 PG *, (11)

together with the “master equation” u=G*F for the Green’s
function, where u# and F represent the displacement and
external force vectors, respectively.

For simplicity, the external forces are taken to be the
atomic pair forces acting on the two atoms near the center
of the crack, in addition to the so-called "thermal misfit
stress" arising from the difference in the thermal lattice
expansion coefficients in the heterostructures. In the present
study, the effects of misfit strains in the film layers on the
crack properties are investigated by modifying the non-
linear cohesive force law at the crack tip region. We
calculate the crack stability diagram for the interface crack
as well as for the "vertical crack”" located perpendicular to
the interface plane. It has been found that the critical stress
for the crack opening and lattice trapping of the interface
crack are decreased compared to these in the bulk crystal.
The dislocation emission criterion for the interface crack is
also significantly different from those of the bulk crystal.

3. CONCLUSIONS

We have studied the atomistic and mechanical
properties of nanoscale semiconductor heterostructures,
using the O(N) TBMD and path probability methods. This
method is very efficient and reliable scheme to study
properties of large scale systems. In the present study, we
have considered semiconductor (001) heterostructures with
ideal interfaces as well as those with interface disorder. For
heterojunctions like GaAs/AlAs and ZnSe/GaAs, we allow
cationic intermixing, which very likely takes place during
the growth process. For treating the interdiffusion in the
(001) direction of zincblende structure, we use a vacancy
mechanism of diffusion and simply takes one of the
sublattices. We have found that the interface disorder
influences quite significantly the electronic properties of the
semiconductor heterostructures. We have also found that
the properties of defects like dislocations and cracks in

nanoscale materials depend sensitively on the size of the
crystallites and differ significantly from those of the bulk
materials.
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