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ABSTRACT

By analogy with Monte Carlo algorithms, we dis-
cuss new strategies for design and redesign of libraries
in high-throughput experimentation, or combinatorial
chemistry. Several Monte Carlo methods are examined,
including Metropolis, several types of biased schemes,
and composite moves that include swapping or paral-
lel tempering. Among them, the biased Monte Carlo
schemes exhibit particularly high efficiency in locating
optimal compounds. The Monte Carlo strategies are
compared to a genetic algorithm approach. Although
the best compounds identified by the genetic algorithm
are comparable to those from the better Monte Carlo
schemes, the diversity of favorable compounds identified
is reduced. Applications to materials discovery, small
molecule discovery, and templated materials synthesis
are discussed.
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1 Materials Discovery

The goal of combinatorial materials discovery is to
find compositions of matter that maximize a specific
material property [2]-[4], such as superconductivity [5],
magnetoresistance [6], luminescence [7]-[9], ligand speci-
ficity [10], sensor response [11], or catalytic activity [3],
[12]-[17]. This problem can be reformulated as one of
searching a multi-dimensional space, with the material
composition, impurity levels, and synthesis conditions
as variables. The property to be optimized, the figure
of merit, is generally an unknown function of the vari-
ables and can be measured only experimentally.

Present approaches to combinatorial library design
and screening invariably perform a grid search in com-
position space, followed by a “steepest-ascent” maxi-
mization of the figure of merit. This procedure becomes
inefficient in high-dimensional spaces or when the figure
of merit is not a smooth function of the variables, and
its use has limited most combinatorial chemistry exper-
iments to ternary or quaternary compounds.

We have suggested new experimental protocols for
searching the space of variables in combinatorial chem-
istry, exploiting an analogy between combinatorial ma-

terials discovery and Monte Carlo computer modeling
methods [1]. Several variables can be manipulated in
order to seek the material with the optimal figure of
merit. Material composition is certainly a variable. But
also, film thickness [18] and deposition method [19] are
variables for materials made in thin film form. The pro-
cessing history, such as temperature, pressure, pH, and
atmospheric composition, is a variable. The guest com-
position or impurity level can greatly affect the figure of
merit [17]. In addition, the “crystallinity” of the mate-
rial can affect the observed figure of merit [18]. Finally,
the method of nucleation or synthesis may affect the
phase or morphology of the material and so affect the
figure of merit [20].

The experimental challenges in combinatorial chem-
istry appear to lie mainly in the screening methods and
in the technology for the creation of the libraries. The
theoretical challenges, on the other hand, appear to lie
mainly in the library design and redesign strategies. We
have addressed this second question via an analogy with
Monte Carlo computer simulation, and we have intro-
duced the Random Phase Volume Model to compare
various strategies. We find the multiple-round, Monte
Carlo protocols to be especially effective on the more dif-
ficult systems with larger numbers of composition and
non-composition variables.

An efficient implementation of the search strategy is
feasible with existing library creation technology. More-
over “closing the loop” between library design and re-
design is achievable with the same database technology
currently used to track and record the data from com-
binatorial chemistry experiments. These multiple-round
protocols, when combined with appropriate robotic con-
trols, should allow the practical application of combina-
torial chemistry to more complex and interesting sys-
tems.

2 Small-Molecule Discovery

We have also developed new strategies for design and
redesign of small molecule libraries in high-throughput
experimentation, or combinatorial chemistry [21]. Sev-
eral Monte Carlo methods were examined, including
Metropolis, three types of biased schemes, and compos-
ite moves that include swapping or parallel tempering.



Among them, the biased Monte Carlo schemes exhib-
ited particularly high efficiency in locating optimal com-
pounds. The Monte Carlo strategies were compared to
a genetic algorithm approach. Although the best com-
pounds identified by the genetic algorithm are compara-
ble to those from the better Monte Carlo schemes, the
diversity of favorable compounds identified is reduced
by roughly 60%.

Monte Carlo is a natural paradigm for experimental
design of multi-round combinatorial chemistry, or high-
throughput, experiments. A criticism of high-throughput
experimentation has been its mechanical structure and
lack of incorporation of a priori knowledge. As we have
shown, a biased Monte Carlo approach handily allows
the incorporation of a priori knowledge. Indeed, our re-
sults reveal that biased Monte Carlo schemes greatly
improve the chances of locating optimal compounds.
For moderately complex libraries, the bias can be deter-
mined equally well by experimental or theoretical means.
Although the compounds identified from a traditional
genetic algorithm were comparable to those from the
better Monte Carlo schemes, the diversity of identified
molecules was dramatically decreased in the genetic ap-
proach. Genetic algorithms, therefore, are less suitable
when the list of good molecules is further winnowed by a
secondary screen, a tertiary screen, patentability consid-
erations, lack of side effects, or other concerns. Presum-
ably, as the complexity of the library is increased, these
composite moves will prove more useful for the more
challenging figures of merit. Although we often chose
the initial library configurations at random, sophisti-
cated initial library design strategies available in the lit-
erature can be used, and they would complement the
multi-round library redesign strategies presented here.

3 Templated Materials Discovery

Finally, we have addressed how best to design and re-
design high-throughput experiments for zeolite synthesis
[22]. A model that relates materials function to chemi-
cal composition of the zeolite and the structure directing
agent was introduced. Using this model, several Monte
Carlo-like design protocols were evaluated. Multi-round
protocols were found to be effective, and strategies that
use a priori information about the structure-directing
libraries were found to be the best.

High-throughput, or combinatorial, methods allow
for simultaneous creation of a large number of struc-
turally diverse and complex compounds, generalizing
the traditional techniques of single compound synthesis.
Monte Carlo methods have been proposed and shown
to be efficient methods for library design and re-design
in both material discovery [1] and small molecule de-
sign [21]. Material discovery deals with continuous vari-
ables, such as composition variables and non-composition
variables. Small molecule design deals with discrete

variables, such as the identities of template and ligand.
For templated zeolite synthesis, we have both the con-
tinuous zeolite composition and non-composition vari-
ables and the discrete identity variables of the compo-
nent parts of the organic structure-directing molecules.
All of these variables affect the final zeolite material in
an interrelated way.

As in previous studies, multi-pass Monte Carlo meth-
ods work better than do single-pass protocols. Sophis-
ticated biased Monte Carlo schemes are highly efficient
and much better than simple Metropolis Monte Carlo.
Parallel tempering is the best method for complicated
systems with 5 or more framework chemical composi-
tional variables.
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