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ABSTRACT

We describe a theoretical scheme to combine first-
principles molecular dynamics simulation and non-
perturbative scattering theory for transport calculations. We
compare our approach with published results for electron
transport through a single Al atom. The method is then
applied to the Si/Si0,/Si MOS structure, where we analyze
the correspondence between the localized defect states and
the leakage current. For a 1.04 nm thick MOS structure we
calculate a leakage current of 33 A/cm’, in excellent
agreement with a measured value of 19 A/cm®,
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1 INTRODUCTION

The International Technology Road Map for
Semiconductors predicts that the scaling strategy of
complimentary metal-oxide-semiconductor (CMOS)
devices will come to an abrupt end around the year 2012
[1]. The primary reason for this event is not lithography
scaling problems as was previously thought, but rather
meeting an acceptable leakage current through the silicon
dioxide layer with a thickness below 2 nm [2]. The end of
SiO, as a gate insulator has spurred an active search for an
alternative gate dielectric. However, finding such a material
has proven to be far from trivial.

Because the scaling laws of the semiconductor device
design are pushing the technology to atomic scale ultrathin
SiO, layers [2], the low bias leakage current may be
affected by atomic details of the dioxide layer’s structure.
For ultra-thin SiO, barriers where the atomic structure of
the interface is important, traditional approaches, such as
the WKB approximation, to tunneling across an empirically
defined potential barrier are not appropriate. Instead we
need a theoretical approach that not only correctly predicts
the bonding patterns at the interface, but also describes how
different chemical environments affect the leakage current.
Density functional (DFT) theory provides the information
on the chemical bonding, structure, band offsets, and
stability of the Si/dielectric interface.

A diverse array of DFT-based techniques has been
developed for dealing with the electron transport in
molecular systems including the time-dependent solution of
the Schrodinger equation [3], self-consistent [4] and not
self-consistent [5] time-independent non-equilibrium
Green's functions, non-perturbative solutions of the open
boundary Schréodinger equation [6], transfer matrix
techniques [7], as well as indirect estimates of transport
properties from the electronic band structure of an isolated
molecule [8].

In this paper, we describe the use of the DFT
Hamiltonian within a non-perturbative scattering theory
framework for transport calculations. We first consider a
single Al atom weakly coupled to Al leads, and show that
this theory can identify the contributions of individual
atomic states. We also investigate the strongly coupled case
and compare our findings with the published data. We then
apply our approach to the electron transport across a
Si/Si0,/Si model MOS structure. The calculated leakage
current for a simulated 1.04 nm MOS structure agrees with
recent experimental data. We show how the atomic
structure and chemistry of the MOS structure are reflected
in its transport properties that can be accessed
experimentally.

2 THEORY

The total transmitted current flowing thorough an
atomic structure is given by
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where U, and H, refer to the electrochemical potential of

the left and right gate electrodes, respectively, and a
multiplicative factor of two has been included to account
for spin degeneracy. The transmission matrix element 7},

is the matrix element of the scattering operator T which is
given by the Lippmann-Schwinger equation,
T=V+VGV 2)

A

Here we do not make any approximations, and 7 is
accurate to all orders.



In the limit of low temperature, the Fermi functions can be
approximated by step functions resulting in the final
expression for the total current:
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where the transmission function T(E) is given by
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Plugging Eq. 2 into Eq. 4, we directly obtain [9]:

T(E)=Trl,G,IG,], (5)
where the indices /,7,d stand for the left, right, and “defect”
(i.e. the scattering region) portions of the modeled system,
respectively. We shall employ a local orbital basis,
therefore in the Lowdin representation the “defect”-lead
coupling matrix has a finite range, and only the “defect”
portion of the Green’s function:
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enters the expression for the transmission function. I, and
2, (i=l,r) are given by
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and describe the leads, and the “defect” region’s coupling
to them. Note that the self-energy Z is a complex operator,
and reflects the use of the open boundary conditions. The
effects of the leads density of states are automatically
included via the spectral density operator, given by the
following identity:
A =8(E-H)=Y% 0(E-E,)|ill] )

Due to the sparse nature of the Hamiltonian, only surface
parts of the semi-infinite Green’s functions of the leads are
required and can be calculated by the block-recursion. It
should be emphasized that Eq. 5 comes directly from the
Lippmann-Schwinger equation, and is therefore exact.

In the presence of an applied external bias V, the
transmission function 7(E) depends on V, namely T(E) is
written as T(E,V). In this work we adopt the rigid band
approximation:

T(E,V)=T(E+nV), ©)
so that the current can be written as:
I = J'T(E,V)(f(E—Ef -V)=-f(E-E,)dE
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where 1] is the voltage division factor. In this work, we
follow Datta et al., and I is taken as 0.5.

3 RESULTS

We apply our method to two very distinct systems: the
single-atom Al bridge connecting two semi-infinite Al
slabs, and the Si/SiO,/Si barrier. The first problem has been
well studied theoretically in recent years by several groups
and is a good test case for models [6,10]. We find that our
approach works very well on this system. The second
problem is motivated by the small dimensions of oxide
barriers used in CMOS devices currently under
development [11,12]. Our goal is to determine how the
individual atomic states at the Si-SiO, interface affect
tunneling.

In this work all the eclectronic Hamiltonians are
generated using the local atomic orbital first principles
density functional package FIREBALL. This package has
been successfully used to study various materials problems.
For a recent review of this technique the reader is referred
to reference [13]. As shown later, the combination of a
local orbital basis with the Green’s function technique
results in a very flexible and efficient scheme to describe
transport properties at the atomic level.

3.1 Transmission through single Al atoms
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Fig.1:Schematic representation of the structure investigated

We considered a single Al atom between two Al
electrodes. The model system is described by a supercell
built using a (2x2) (110) Al surface cell that is 14 Al layers
deep. The cell dimensions are 8.1x5.73x20.3 A’. Three Al
atoms are deleted in the middle plane normal to the ¢ axis
of the supercell. The remaining one atom bridges the left
and right sides of the cell, and is the main channel for
electrons flowing between them. However, because the two
sides are so close to each other, we also calculate the
current for a structure containing no bridging atom, but
rather a 2.8 A gap, in order to subtract out the current
created by electrons tunneling between the slabs without
going through the atomic bridge. We use periodic boundary
conditions in two lateral directions, and lateral lattice
constants (a=8.1 A, b=5.73 A) that are just big enough to
avoid a sizable interaction between the atomic bridge and
its periodic image. Four layers of bulk Al atoms in the lead
regions were used to perform the block-recursion required
to generate the Green’s function of the semi-infinite leads

[9].
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Fig.2: Top: Weak coupling limit. The black solid line
shows the density of states and vertical lines give the
inverse participation ratio. The tall/short red lines indicate
the eigen energies of the isolated Al atom and the system’s
Fermi energy, respectively. Bottom: the transmission
function through the Al bridge atom in the weak-coupling
limit.

The distance between the Al atom and the electrodes
was varied to distinguish two important scenarios: the weak
and strong coupling. First, we discuss the weak coupling
case. The DFT calculation of an isolated single Al atom
predicts the location of the 3s and 3p levels at —8.98 eV and
—2.36 eV, respectively. With the single Al atom separated
from each electrode by 5 A (see Fig. 1), a calculation of the
inverse participation ratio (IPR) shows that there are two
strongly localized states corresponding to the atomic states
of the isolated Al atom (the small energy shift is due to the
coupling between the bridge atom and electrodes). Indeed,
the contributions of these two states are also clear in the
density of states (DOS) of this system (the broadening of
the atomic levels is again due to the coupling with
electrodes). Figure 2 (the lower panel) clearly shows the
propagation through resonant states belonging to a weakly
bound atom: only electrons with energy matching the quasi-
atomic orbitals of the bridge atom flow through this
structure.

The upper panel of Fig.3 shows the DOS and IPR of a
single Al atom sandwiched between two Al electrodes in
the strong coupling limit, where the bridge atom/electrode
separation of 1.4 A is close to the experimental interlayer
separation in bulk Al along the (110) direction. The
red/black line shows the projected DOS and IPR at the
bridge/bulk Al atom, respectively. Notice, that the
electronic structure of the bridge atom is not much different
from the bulk Al atoms surrounding it. All the states are
well delocalized due to the strong coupling between all the
Al atoms. The transmission shown in the bottom panel of
Fig.3 is the difference between the transmission when the
single Al atom is present between the electrodes and the

transmission without the bridge atom. This result is in
agreement with the calculation by Cuevas et al. [10].
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Fig.3: Strong coupling limit. Top: density of states and
inverse participation ratio. Bottom: transmission function.

3.2 Atomistic transport through an MOS
structure

To accurately describe the transport through MOS
structures we generated a model of the Si/SiO, interface by
the “direct oxidation” method [11]. The model consists of a
silicon slab with an oxide layer “grown” on top of it in a
quantum molecular dynamics (QMD) simulation. The Si
layers are separated from the stoichiometric oxide by
approximately 4 A of suboxide. Then, in the simplest case,
a mirror image of the cell is generated, and the two are
fused together. That procedure results in a
Si/Si10,/S10,/Si0,/Si structure. Some special care needs to
be taken of the SiO, bonding pattern in the plane of contact.
Mixing and matching the initial Si/SiO, structures, both
symmetric and asymmetric MOS models could be built.
The structure then is annealed in a high-temperature QMD
run followed by a quench to a local energy minimum. MOS
model structures thus generated are used as scattering
regions or “defects”. In particular we consider here
tunneling through such a defect with the oxide thickness of
10.2 A and a 5.43 A x 5.43 A cross-section. The interface
region of the relaxed simulated MOS capacitor is shown in
Fig. [4]. There are no dangling bonds in the model. Once
we have the defect model, two perfect Si regions with the
same cross section as the defect, representing the leads, are
considered attached to both sides of the defect. Thus the
total length of the system is taken to infinity. The right Si
region represents the channel, and the left region a grain of
poly-Si (gate electrode).

Our goal is to investigate how the atomic structure of
the interface translates into transport characteristics. There
are three distinct types of possible defects in our structures:
suboxide SiO4 regions where the oxidation state of Si
gradually changes from 0 to +4; oxidation induced strain;
and interfacial defects such as dangling bonds. As seen in
Fig.4, the defect labeled 2 is the suboxide Si, while the
defect labeled 1 is the oxidation induced strain defect in



which one Si-Si bond is elongated. The simulated structure
does not have dangling bonds as evidenced by the clean gap
in the corresponding DOS (Fig. 5).
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Fig.4: The interface region of the simulated MOS structure.
Blue color indicates defects at the interface.
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Fig.5: The transmission function, local density of states and
inverse participation ratio of the simulated MOS structure.

In the suboxide layer, a Si atom bonded to three Si
neighbors and one oxygen produces a localized state in the
valence band at -4.2 eV as well as a state at -1.6 eV in the
conduction band (label 2 in Fig.5). The “suboxide™ states
dominate the valence band edge. Deeper into the band, at
an energy of -5.6 eV (label 1), we see localized states
induced purely by the oxidation strain causing a distortion
of the Si bonding near the interface. The localized states are
clearly visible in the IPR plot and are directly related to
corresponding peaks in the transmission function. If
somehow these defects could be eliminated, the resulting
structure might display a reduced leakage. However, our
recent studies show that it is very difficult, if not
impossible, to build a perfect interface without the
suboxide. Even the Si/SiO, model with no nominal interface
layer recently proposed by Buczkko et al. [14] contains
about 4 A sub-oxide [9].

The leakage current for MOS structures with the oxide
thickness ranging from 4 A to 32 A have been recently
measured at Bell Labs [15]. They have found leakage
current densities of 19 A/em” and 107 A/cm” for a 35 nm
gate length transistor with oxide thickness of 10.2 A and
19.0 A, respectively. Using the crossectional area of 29.5
A? and the current of 9.84 x 107 pA at a bias of 1 V our
theory predicts a current density of 33.2 A/cm” for a 10.2 A
barrier structure (19.0 A total oxide thickness), in
remarkable agreement with experiment. Here, we would
like to emphasize that a 4 A sub-oxide is almost intrinsic at
the Si/SiO, interface, so the width of the tunneling barrier
should be reduced by the thickness of the sub-oxide. This is
one of the reasons for the failure of the phenomenological
barrier picture to estimate leakage current through very thin
barriers [12].

4 CONCLUSION

Using a combination of density functional quantum
molecular dynamics and ballistic transport theory we
generated ultra-thin MOS structures and investigated the
leakage current through them. Our technique provides a
direct correspondence between features in the I[-V
characteristic and the microscopic nature of the device
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