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ABSTRACT

Binding energies for an exciton (X) trapped in the
two-dimensional quantum dot by a charged impurity lo-
cated on the z axis at a distance from the dot plane
are calculated by using the method of few-body physics.
This configuration is called a barrier (D, X) center or
a barrier (A~, X) center. The dependences of the bind-
ing energy of the ground state of the barrier (D1, X)
and (A7, X) centers on the electron-to-hole mass ratio
o and the dot radius R for a few values of the distance
d between the fixed positive ion on the z axis and the
dot plane are obtained.
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Exciton complexes have been the subject of intense
studies in the last years, both experimentally and the-
oretically. The stability of exciton complexes in bulk

semiconductors was proven theoretically in 1958 by Lampert!!

After the first evaluation of binding energies for such sys-
tems performed by Thomas and Hopfield®!, based on
a comparison with molecular analogues, several varia-
tional calculations have been presented in the literature
The simplest exciton complex is formed when an elec-
tron and a hole of effective masses m; and m}, respec-
tively, are trapped by a charged impurity. They can be
used as a test for the theoretical description of exciton-
impurity interaction. There are two kinds of exciton
complexes: the (DT, X) and (A, X) complexes. They
result, respectively, from the binding of an exciton to an
ionized hydrogenic donor or acceptor impurity. Their
stability and binding energies in three-dimensional (3D)
semiconductors have been the subject of several theo-
retical studies within the effective mass approximation
as a function of the electron-to-hole effective mass ra-
tio ¢ = m%/m}. As a result, it appearsl® that the
(DT, X) complex is stable if o < 0¢ = 0.454 and that
the (A, X) complex is stable if o > ¢°. However, only
few theoretical studies have been devoted the exciton
complex in low-dimensional structures!”’—%. Up to now,
the study related to the quantum confinement effect on
the (D', X) and (A~, X ) complexes in a quantum dot
(QD) is still rare. So it is necessary to make theoretical
study for the binding energy of (D", X) and (4™, X)
complexes in QDs.

[3—6]

A system in which an electron and a hole confined
to a parabolic QD are bound by a charged impurity lo-
cated on the z axis at a distance d from the dot plane is
called a barrier (D", X) or (A~, X) center QD. There
has been interest in the subject lately. Rich electronic
structures and optical properties, and a variety of struc-
tural phase transitions are predicted in such systems. In
3D semiconductors, the binding energies of (DT, X) and
(A~, X) complexes are generally low, and their existence
depends sometimes on specific stability conditions/'?.
However, in quasi-zero-dimensional semiconductors (QDs),
because the overlapping between the wave functions of
the electron and the hole becomes more important, the
(D*,X) and (A~, X) complex states are more bound
than in the bulk. So it is expected that the observation
of bound exciton complexes should be more easy in 0D
semiconductors than in 3D semiconductors.

In this paper, we present a numerical diagonalization
of Hamiltonian to determinate the binding energies of
the (DT, X) and the (A™, X) complexes with a charged
impurity placed on the z axis at a distance d from the
dot plane. We also studied the stability and binding
energy of the ground state of the barrier (D%, X) and
(A~, X) centers in a parabolic quantum dot as a func-
tion of the electron-to-hole mass ratio and the dot ra-
dius.

The effective-mass Hamiltonian for the barrier (D, X)
center in a parabolic QD can be written as follows:
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¢ is the effective dielectric constant, ¥, and 7 are
the position vectors of the electron and the hole with
respect to the dot centre, d is the distance between the
fixed positive ion on the z axis and the dot plane, and wy
is the strength of the confinement. We assume that the
effective masses as well as the dielectric constants are the
same in the well and barrier materials. The Hamiltonian
for the barrier (A~, X) centre in a parabolic QD can be
obtained from V¢ by changing the signs of the first term
and the second term.



Introducing the coordinates
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then Eq. (1) can be rewritten as
H = Hy+ Vg, (4)
with
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where M =m} +m;}; and g =mim} /M.

The eigenstates of the barrier (DT, X) center QD can
be classified according to the total orbital angular mo-
mentum of the electrons along the z direction. To obtain
the eigenfunctions and eigenenergies associated with the
system motion, we diagonalized H in a model space
spanned by the translationagly invariant harmonic prod-
uct bases @k = [¢} , (R)9,,, ()L, where [K] de-
notes the whole set of quantum numbers (ny, 1, n2, f2)
in brevity, £, + ¢ = L is the total orbital angular mo-
mentum, ¢%, is a two-dimensional harmonic oscillator
state with a frequency w, an energy (2n + |£] + 1)hwl],
When w = wyg, the basic function is an exact solution of
H if the Coulomb interaction is removed. In practice, w
serves as a variational parameter around wy to minimize
the eigenenergies. The matrix elements of H are then
given by the following expressions
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where R, is the radial part of two-dimensional har-
monic oscillator function, Bigjk+ is the transforma-
tion bracket of two-dimensional harmonic product states
with two different sets of relative coordinates for the
systems, which allows us to reduce the otherwise multi-
integral into single-integral. Nonvanishing Bjg|[x/] oc-
curs only when both the states ® |k (R,7) and Pk (R, )
have exactly the same eigenenergy and eigenangular mo-

mentum. Analytical expression for Bjxj[x has already
been derived in Ref. 12.

Our numerical computation is carried out for one of
the typical semiconducting materials, GaAs, as an ex-
ample with the material parameters shown in the fol-
lowing: € = 12.4, and m} = 0.067m, (where m, is the
single electron bare mass). In this work we have used
the energy unit is meV and the length unit is nm.

We define the binding energy of the barrier (DT, X)
centers as

Ep(D",X) = E(D% + Ey — E(D", X) (11)

where E(D%, X) is the ground-state energy of the bar-
rier (D, X) center in the QDs, Ej is the lowest levels of
a hole in the QDs without the Coulomb potential, and
E(DY) is the ground state energy for the barrier donor
impurity.

We have calculated the binding energy of the ground-
state of the complex as a function of the effective mass
ratio o and the dot radius R. The dependences of
Ep(D*,X) and Eg(A~, X) on the electron-to-hole ef-
fective mass ratio ¢ with a fixed value of Awg = 1.0meV
for a few different values of distances are plotted in Figs.
1. Fig. 1a shows the variations of Eg(D ™, X) as a func-
tion of the electron-to-hole effective mass ratio cand Fig.
1b shows that of Eg(A~, X). Obviously the binding en-
ergy of the barrier (DT, X) center is larger than that of
the barrier (A~, X) center in the same conditions. From
Fig. 1a, it is seen that, at the beginning, the binding en-
ergy Eg(D%, X) increases with decreasing the electron-
to-hole effective mass ratio ¢, then the binding energy
reaches a maximum at some o which is d-dependent,
after that, as the o is reduced further, the binding en-
ergy begins to decrease and eventually becomes nega-
tive, i.e., there exists a critical mass ratio ¢¢, such that
if 0 < 0° the barrier (DT, X) center configuration is
unstable. It is obviously different from the 3D case be-
cause the (D1, X) complex is stable if ¢ < 0¢ = 0.454(°!
and the spherical QDs with an infinite potential well
casel” because the (D1, X) complex remains always sta-
ble. Both the maximum position and the critical mass
ratio are dependent of the distance d. Compared with
the binding energies for different distances d between
the charged impurity located on the z axis and the dot
plane, we find that the larger the distance d, the higher
the binding energy. It is clear that as d increases from
zero, the attractive interaction responsible for binding
increases. However, the barrier (A, X) center configu-
ration does not exist a critical mass ratio ¢¢, i.e., when
d > 0.1nm, the barrier (A~, X) center configuration is
always stable. This point is obviously different from the
(A~, X) complex in 3D semiconductors(®! which is stable
if 0 > 0° = 0.454. From Fig. 1b, we can see that the
binding energy increases with decreasing the electron-
to-hole effective mass ratio o, i.e., the heavy hole gives
rise to larger binding energies than the light hole.

It is interesting to study the results when d — 0. In
this case, the (D', X) and (A~, X) complexes do not



exist any bound state. This physical origin is that the
increase in the repulsion energy becomes predominant
and cannot be compensated for by the increase of at-
traction energy when d — 0.

In order to understand the bound state feature , it is
useful to study the change of the binding energy of the
barrier (D%, X) and (A, X) center QDs as a function
of the dot radius R. In Figs. 2, we plot the binding
energies of the barrier (DT, X) (Fig. 2a) and (4™, X)
(Fig. 2b) center QDs with the dot radius R from 10
to 50nm for a fixed value of mass ratio o = 0.68. It
is readily seen that the binding energies increase with
increasing the dot radius except the case of the binding
energy of the (DT, X) complex at d = 0.2nm. In this
case, we find there exists a critical radius R¢, such that
if R < R¢ the barrier (DT, X) center configuration is
unstable. It is obviously seen that these results are in
good agreement with those in Figs. 1.
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Figure Captions:

Figs. 1 Dependences of the binding energy of the
ground-state on electron-to-hole effective mass ratio o
for a few different values of d with Awy = 1.0meV are
plotted: (a) the barrier (DT, X) center; (b) the barrier
(A, X) center..

Figs. 2 Dependences of the binding energy of the
ground-state on the dot radius R for a few different
values of d with ¢ = 0.68 are plotted: (a) the barrier
(D*, X) center; (b) the barrier (4™, X) center.



