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ABSTRACT 

Recently, it has been suggested that it may be possible 
to use combinations of coupled quantum wire waveguides 
to form quantum computational qubits [1],[2].  However, 
there are several related problems intrinsic to this approach.  
First, in order to completely switch the electron probability 
wave from one waveguide to another, the length of the 
region in which the two waveguides are coupled must be 
tuned quite precisely.  In addition, even with a well-tuned 
coupling length, it appears that complete transmission of 
the probability wave cannot be achieved [2].  Both of these 
problems may be mitigated by the addition of a bias along 
the length of the quantum wires – this would effectively 
alter the coupling length and may also increase the 
transmission gain.  We show that adding this bias does not 
provide gain to overcome the lack of 100% coupling 
between the two guides, but can be used to compensate for 
imprecision in the length of the device’s coupling region. 
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1 INTRODUCTION 

The promise of faster and more effective computation 
has led to the concept of quantum computers, which are 
hoped to surpass the limits of binary, digital computers 
[3],[4].  This promise has led in recent years to a rapid 
development in quantum information theory.  The structure 
of quantum computation has centered around the use of a 
qubit [5], which is a generalization of a simple binary state.  
An important aspect of quantum computing is that it has 
been cast with the promise of vastly improved computing 
speeds, but the qubit alone is not sufficient to produce this 
speed increase.  The coupling of two bits, however, to 
produce a controlled-not (CNOT) operation has been shown 
to be sufficient for general computation.  One popular 
example of such a 2-bit system is the Fredkin gate [6].  This 
simple gate is a controlled-not system: if a “1” is present in 
the second bit, the first bit is passed through unchanged.  
On the other hand, if a “0” is present in the second bit, the 
first bit performs a simple NOT operation (interchanging 
the strength of the “0” and “1” states).   

One recent suggestion for a semiconductor qubit 
actually utilizes the interference of quantum waves 
contained within two parallel waveguides [1].  In this 

system, the active length of a slit through which the wave 
can interact with the two adjacent guides is used to generate 
the proposed qubit, as shown in Figure 1.  Coupling this 
device to a second qubit offers the computational basis – 
the interaction between the two electron probability 
distributions slows the first down, defeating the transfer.  
This interaction provides the CNOT function discussed 
above.   

 

 

Figure 1:  A conceptualization of a waveguide qubit.  
Bertoni et al [1] have proposed a similar qubit. 

 
The essence of the device’s operation is to excite only 

one of the inputs, and then to control the coupling so as to 
move the wave between the two outputs.  Here, we take the 
qubit as being in a high-mobility GaAs/AlGaAs 
heterostructure (at low temperature), in which the 
waveguides are defined by electrostatic potentials (hardwall 
potentials are used for this investigation).  The two guides 
are assumed to be 40 and 45 nm wide, and are separated by 
a potential barrier that is 30 nm thick.  An opening is made 
in this central barrier that allows the two waveguides to 
couple.  This opening length is varied to determine the 
critical coupling length, the length at which transmission 
from the input to one of the outputs is at a maximum.   

An electron probability distribution in an excited 1-D 
sub-band oscillates between two quantum wires with a 
frequency that is dependent upon its energy.  Thus, 
adjusting the coupling length only tunes the device for one 
sub-band.  We assure that only a single sub-band 
propagates in each isolated waveguide by setting the Fermi 
energy to 5 meV, roughly halfway between the excitation 
energies of the first and second sub-bands in the quantum 
wires.  This energy corresponds to a quasi-two-dimensional 
electron density of 1.4 × 1011 cm-2.  While relatively low, 
this is still well above the metal-insulator transition in such 
a heterostructure [7].  We denote the top left quantum wire 
by input one, the top right quantum wire by output one, the 



bottom left quantum wire by input two, and the bottom 
right quantum wire by output two.    

We have previously described our motivation for using 
the full wave function solution, and described a means by 
which the desired transfer from one output to the other can 
be accomplished by the use of an applied magnetic field 
[2].  In this paper, we illustrate the use of an applied 
electrostatic potential to tune the length of the interaction 
region and thereby increase the transmission gain.  It is 
hoped that the use of an applied bias can thus mitigate 
imprecision in the coupling length, making the device 
easier to realize physically.  We also investigate the 
possibility of using an applied electrostatic bias to switch 
electron current from one output to the other. 

2 TRANSMISSION CALCULATIONS 

We perform our calculations by solving Schrödinger’s 
equation on a discretized lattice (with a lattice constant of 
3.75 nm) using a variation of the Usuki method of mode-
matching via the scattering matrix [8],[9].  The device is 
partitioned into ‘slices’ and the one-dimensional 
Schrödinger equation is solved for each slice.  The kinetic 
energy terms of the Hamiltonian are approximated using a 
finite-difference approach and are thus mapped onto a two-
dimensional tight-binding model, coupling the slices 
together and giving the (discretized) Schrödinger equation 
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This tight-binding model is then used to calculate a 
transmission for each slice, which enables one to determine 
the total transmission across the device. 

To find the current, we solve the Landauer-Büttiker 
formula.  Since we assume that our device is at low 
temperature, this equation is 
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where µs is the quasi-Fermi level at the source (the input 
side of the device) and µd is the quasi-Fermi level at the 
drain (the output side of the device).  We apply the bias 
across the device such that it raises the source quasi-Fermi 
level and lowers the drain quasi-Fermi level.  Thus, to 
perform the numerical integration over transmission, we 
find the transmission for a discrete range of energies, each 
of which has a position-dependent quasi-Fermi level.   

3 RESULTS 

In order to investigate the effects of an applied source-
drain bias upon our device, we began by finding a coupling 
length that would result in a large transmission from input 
one to output two for a given Fermi energy.  Because we 

are only concerned with single-mode quantum wires, we 
picked a Fermi energy that was in the middle of the range 
for which only a single mode would be excited, namely 5 
meV.  We performed simulations for a range of different 
window lengths and looked for a coupling length that 
resulted in nearly all of the electron probability transiting 
through output two (see Figure 2).  The length we chose 
was 375 nm. 
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Figure 2:  The transmission through output two is at a 
maximum at 375 nm and varies strongly with coupling 

length. 
 

The electron probability density for this coupling length 
is shown in Figure 3.  It is clear that electrons are most 
likely to exit the device through output two.  In fact, the 
transmission through output two is 86.24% of the input 
transmission, while the transmission through output one is 
3.817%.  The remainder of the input density is reflected 
(3.448% through input one and 6.056% through input two).   

Armed with this knowledge, we can begin to investigate 
the effects of an applied source-drain bias Vsd upon this 
device.  We apply the bias in such a way that it raises the 
quasi-Fermi level in the input wires while lowering the 
quasi-Fermi level in the output wires.  For the coupling 
length and Fermi energy we have chosen, a slightly 
negative source-drain bias increases the transmission 
through output two (see Figure 4).  The maximum 
transmission is 86.84%, only 0.6% higher than the original 
transmission, which is not much of an improvement.  This 
result indicates that although our coupling length could 
have been a bit more precise, applying a bias will not 
dramatically increase the gain in the system.  It may, 
however, be used to ‘patch’ a small imprecision in the 
coupling length.  Interestingly, Figure 4 also shows that the 
dominant output transmission appears likely to switch when 
a larger positive bias is applied to the device, indicating that 
it may be feasible to use an applied bias to switch the 
device. 

Figure 5 shows the effect of an applied bias on the 
current in the device.  As expected, increasing the bias 
increases the current.  There are no conductance plateaus 
because the device never has more than a single excited 
mode. 
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Figure 3:  Electron probability density 
for the coupling length we have 

chosen.  The majority of the 
probability density exits the device 

through output two. 
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Figure 4:  The application of a small 
bias can be used to correct imprecision 

in the coupling length. 
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Figure 5:  The current varies linearly 
with applied bias.  There are no 

plateaus because the device is single-
mode. 

In order to investigate whether it is possible to switch 
the electron probability from one output to the other by the 
application of an applied bias, we simulated the device’s 
response to larger biases.  Figure 6 shows the device’s 
response.  Although output one dominates for a portion of 
the bias range, the transmission never becomes large 
enough to seriously consider using the bias as a means of 
switching the device.  We cannot increase the bias more 
than is shown in Figure 6 because we don’t want our 
system to have more than a single excited mode.  As in 
Figure 5, the current computed in this simulation varies 
linearly with the applied bias. 
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Figure 6:  The application of a large bias cannot be used to 
switch the device. 

 
We were also interested in seeing how the coupled 

quantum wire system responds to applied biases that were 
large enough to cause transitions between 1-D sub-bands.  
Figure 7 shows a schematic illustration of this phenomenon.  
As the bias becomes larger, more of the energies that are 
integrated to solve the Landauer-Büttiker formula have 
output quasi-Fermi levels that are lower than the energy of 
the lowest sub-band, resulting in zero transmission for that 

energy and thus lowering the overall current.  This result 
differs from that of a quantum-point contact, for example, 
in which there is a two-dimensional electron gas outside of 
the QPC [10], and hence, there are an infinite number of 1-
D sub-bands.  Accordingly, Figure 8 shows that as the bias 
continues to increase the current begins to drop. 
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Figure 7:  As the applied bias is increased, the Fermi level 
in the output drops below the energy of the lowest mode, 

cutting off current. 
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Figure 8:  With increasing bias, the current decreases 
because the output quantum wire has no available sub-

bands. 
 

Finally, we investigated whether an applied bias can be 
used to correct imprecision in the coupling length.  To test 



this, we used a device in which the coupling length was set 
about 5% away from the optimal coupling length we 
calculated earlier, that is, a new coupling length of 356.25 
nm.  For this device, the unbiased transmission through 
output two drops to 77.63%, an appreciable change.  Figure 
9 shows the current through this device as the applied bias 
is increased.  In order to keep the quantum wires single-
mode, we cannot use an applied bias that results in an 
energy higher than about 1.5 meV, corresponding to the 
potential at which the current begins to drop due to the lack 
of output sub-bands discussed above.  The transmission 
(not shown) increases linearly with the simulated bias, so 
the highest transmission, corresponding to a potential drop 
of 1.5 meV, is about 82%.  Thus, even though we did not 
regain our maximum transmission, the application of an 
applied bias brought us about half of the way.  With a 
smaller imprecision in coupling length, the application of 
an applied bias would bring the transmission closer to its 
maximum value.  For example, when the coupling length is 
2% away from it’s optimized value, an applied bias of -1.08 
meV brings the transmission through output two up to 
85.02% from an unbiased value of.53.07%, illustrating both 
the sensitivity of the device to the coupling length and the 
dramatic changes possible by applying a bias. 
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Figure 9:  This plot shows the highest bias that we can use 
to correct an imprecise coupling length. 

4 SUMMARY 

We have described the motivation behind using coupled 
quantum wires as a basis for a quantum-computational 
qubit.  The qubit would operate by exciting one of the 
inputs to the coupled quantum wire system and using a 
second qubit (possibly with a different geometry) to create 
a potential field that would control the output chosen by the 
original excitation.  In order to achieve this goal, it will be 
necessary to maximize the reliability of the coupled 
quantum wire device.  To this end, we have shown that the 
application of an applied electrostatic source-drain bias can 
be used to compensate for imprecision in the length of the 
coupling region that determines which output is chosen by 
an unbiased excitation.   

We have also found that it is difficult to switch the 
output electron probability distribution from one output to 
the other by the application of an electrostatic bias.  
Although a large enough bias may switch the device that 
we simulated, the bias will excite additional 1-D sub-bands 
first.  We have not ruled out the possibility of using an 
applied source-drain bias to switch the device, but such an 
application would need to take care to assure that it is not 
exciting additional 1-D sub-bands. 
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