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ABSTRACT

!The Protein Structure Prediction problem, which
involves correctly predicting the geometrical conforma-
tion of a fully folded protein, is extremely difficult to
solve and there currently is no “best” method of gener-
ating solutions. This paper focuses on an energy mini-
mization technique and the use of a multiobjective ge-
netic algorithm, the multiobjective fast messy genetic al-
gorithm (fmGA) to obtain solutions to this problem. We
extend the fmGA to generate solutions to the PSP prob-
lem as a multiobjective problem using the CHARMm
energy function. Further, the results of the multiobjec-
tive fmGA formulation compare very favorably to our
previous results from the single objective fmGA formu-
lation.

Keywords: Multiobjective Optimization, Energy Min-
imization, Protein Structure Prediction Problem, Fast
Messy Genetic Algorithm.

1 INTRODUCTION

Interest in discovering a methodology for solving the
protein structure prediction problem extends into many
fields of study including biochemistry, medicine, biol-
ogy, engineering, and scientific disciplines [3]. Yet, the
panacea procedure to solving this Grand Challenge Prob-
lem has eluded researchers. Approaches for finding the
final resting nature (tertiary conformation) of a protein
range from empirical, using x-ray crystallographic stud-
ies, to mathematical modelling, such as minimum energy
models. Although structures are accurately found using
empirical methods, these methods can take months be-
fore results are achieved. It is for this reason that min-
imum energy models are utilized; however, there has
been no computational breakthrough in regards to ac-
curately forecasting the final folded state of a protein
using these modelling approaches.

In the past, Evolutionary Algorithms have been shown
to be well suited for optimization problems with single
and multiple objectives [6]. In fact, many single ob-
jective Evolutionary Algorithm approaches have been
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successfully applied to the Protein Structure Prediction
problem using the energy minimization model. Our pre-
vious research has obtained “good” results, for small
peptides, using the single objective fast messy genetic
algorithm (fmGA) [4], [5]. The extension of this work
to the multiobjective realm is done to increase the effec-
tiveness of the algorithm. Previous research by Zydal-
lis [6] has shown a multiobjective version of the fmGA
to be effective and efficient when applied to multiob-
jective optimization problems. These results have mo-
tivated the extension of our PSP work to the multi-
objective domain. The two proteins analyzed here are
[Met]-Enkephelin, which consists of 5 residues and 24 di-
hedral angles (Tyr-Gly-Gly-Phe-Met amino acids), and
Polyalanine which consists of 14 residues and 56 dihe-
dral angles (ALA;,...,ALA4 amino acids). Each of
the dihedral angles is represented by a binary string of
10 bits yielding a landscape size of 241924 and 561024
respectively.

The purpose of this paper is to provide, for the first
time, an analysis of a multiobjective approach utilizing
the fmGA as the searching mechanism applied to the
Protein Structure Prediction problem. This paper cov-
ers the analysis of two proteins: [Met]-enkephlan and
Polyalanine and presents the modified formulation of
the fitness function to extend it to a multiobjective for-
mulation. A description of the fmGA algorithm, testing,
results, analysis and conclusions follow.

2 MULTIOBJECTIVE
FORMULATION

To extend the fmGA to the multiobjective arena,
the single objective CHARMm protein energy fitness
function must be modified to generate multiple inde-
pendent fitness functions. In the single objective im-
plementation, the CHARMm energy function is utilized
and consists of a summation of ten major terms. To uti-
lize a multiobjective approach, the objectives are drawn
from the set of terms within the CHARMm energy func-
tion. Specifically, the energy function is decomposed
into the connected (bonded) and non-connected (non-
bonded) atom energies. These two objectives are fur-
ther divided into:(bonded) stretching, bending, torsion,
and (non-bonded) electrostatic, and van-der-Waals en-



ergy terms. Each term represents a function separately
targeted for minimization. The decision variables are
the dihedral angles for the protein being solved. The
decision maker is provided with the set of solutions, the
Pareto Front, that the algorithm has found and makes
a decision as to which area of the front they prefer. Ul-
timately, the multiobjective approach is anticipated to
yield “better” results than the single objective approach
as each of the functions are simultaneously optimized.
The CHARMm energy function consists of ten major
terms. This yields a multiobjective formulation consist-
ing of anywhere from two to ten objective functions.
The ten terms of the CHARMm energy model are:

1. E; = Fixed Energy

2. E5 = Non-Bonded Energy

3. E3 = Non-Bonded Energy One-Four

4. E4 = Dependent Bond Energy

5. E5 = Independent Bond Energy

6. Eg = Dependent Angle Energy

7. E7 = Independent Angle Energy

8. Eg = Dependent Dihedral Energy

9. FE9 = Independent Dihedral Energy

10. E19 = Independent Improper Dihedral Energy

In our previous single objective research and the mul-
tiobjective testing presented in this paper, only nine of
the CHARMm energy terms are utilized. The last term,
Independent Improper Dihedral Energy, is not utilized as
it does not provide a significant impact to the overall en-
ergy value. The multiobjective formulation presented in
this paper consists of the following two objectives, built
from the nine available objectives listed above. The
terms of the objectives are grouped this was to give us
valuable insight into tertiary structures that may not be
of a unique minimum energy and others that are stable

structures.
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3 FAST MESSY GENETIC
ALGORITHM

The fmGA is a binary, stochastic, variable string
length, population based approach to solving optimiza-
tion problems. The fmGA was developed by Goldberg,
Deb and Kargupta [1] and later applied to the PSP prob-
lem by Merkle, Gates, Lamont and Pachter [2]. The
main difference between the fmGA and other genetic
approaches is the ability of the fmGA to explicitly ma-
nipulate building blocks (BBs) of genetic material in
order to obtain “good” solutions and potentially the
global optimum. Most other single and multi objective
approaches implicitly manipulate these BBs to obtain
solutions. The fmGA contains three phases of opera-
tion: the initialization phase, the building block filtering
(BBF) phase, and the juztapositional phase, which in-
cludes various computational parameters. Prior to ex-
ecution of the algorithm, the user specifies which BB
sizes to execute. During execution of the fmGA, the
initial BB size is run to completion (through all three
phases), the BB size is incremented and the subsequent
BB size is run to completion and so on until the last BB
size completes. At this point the algorithm terminates
with a final solution for the user.

In the initialization phase of the fmGA, the popula-
tion size is determined by an equation derived to over-
come the noise present in the BBF process. Once the
population size is determined, each of the population
members are randomly generated and their correspond-
ing fitness values are calculated through the use of the
CHARMm energy model. These population members
are referred to as fully specified since all of the asso-
ciated loci of the population member contain specified
allelic values.

The fully specified population members from the ini-
tialization phase are then systematically reduced in length
to the user specified BB size through the use of a BBF
schedule. The BBF process randomly deletes a speci-
fied number of bits from each population member over
a number of generations specified in the schedule. This
deletion of bits is alternated with tournament selection
so that only the “best” partial strings are kept for pro-
cessing in the subsequent generations. At the end of the
BBF process, the entire population consists of popula-
tion members of the user specified BB length. These
population members are referred to as underspecified
strings strings since there are some bit positions that
do not have an allelic value specified. A Competitive
Template (CT) is used to evaluate these partial strings.

The juxtapositional phase takes the “good” BBs found
from the filtering process and combines them together
through a cut-and-splice operator. This operator ran-
domly chooses two strings and based on the probabili-
ties of cut and splice, cuts the strings and splices them
together accomplishing the goal of crossing over infor-



mation between the strings. This process is alternated
with tournament selection so that only the best strings
are kept from generation to generation. At the conclu-
sion of this phase, fully specified strings exist in the pop-
ulation and the next BB size is evaluated via an outer
loop over these three phases

The competitive templates are an extremely impor-
tant part of the fmGA. To evaluate an underspecified
population member, the CT is copied into a temporary
location and the bits that are specified in the population
member replace the bits of the CT within this tempo-
rary location. Once this is accomplished, the temporary
string is evaluated and the resulting fitness is associated
with the underspecified population member. In the case
of an overspecified population member, which may oc-
cur when the cut-and-splice procedure causes a member
to have multiple occurrences of a particular bit, a left-
to-right method is employed. In this method, the first
allelic value encountered for a particular loci is recorded
as the value present for evaluation purposes.

Population members that contain very few specified
bits with respect to the overall string length, as is the
case at the end of the BBF process, are highly depen-
dent on the CT. The reverse holds for strings that have
the majority of their bits specified (the case at the end
of the juxtapositional phase), as they only need to take a
few bits from the CT. This illustrates the importance of
the CT in the overall execution of the fmGA. Previous
research is based on the concept of generating a ran-
dom CT and periodically updating this template with
the best found population member over the course of
execution of the algorithm. In this paper we provide
an analysis of the multiobjective approach along with a
more intelligent choice for the CT in order to increase
the effectiveness of the fmGA.

In the multiobjective version of the fmGA, one CT
is used per objective function. Each of the CTs are tied
to a particular objective and are updated with the best
population members per that objective at the end of
the juxtapositional phase. Random CTs are a natural
starting point since the goal of the fmGA work is to
generate a robust algorithm that obtains solutions for
various optimization problems. In order to increase the
effectiveness of the algorithm problem domain knowl-
edge is incorporated into the fmGA and the number of
CTs utilized is increased. The three CT methods used
in this paper are:

1. Randomly generate a CT per objective function,
then conduct a localized search on these CTs. This
memetic approach involves conducting a local search
of the competitive templates before each template
update.

2. The use of fully specified population members con-
taining a Secondary Structure as the CTs. Seeded

CTs are hard coded into the fmGA using known
alpha-helix and beta-sheet dihedral angles. The
algorithm is expected to achieve better fitness val-
ues at a faster rate for proteins having either of
these secondary structures through this method.

3. Using more than a single CT per objective func-
tion developed via the aforementioned methods.
This approach allows for more exploration since
each population member is evaluated using a num-
ber of templates and therefore has the potential to
find a better solution by searching different areas
of the landscape.

4 TESTING, RESULTS AND
ANALYSIS

Testing of the various CT approaches in the fmGA
algorithm was accomplished on a 1.7 GHz Intel P-4 ma-
chine with 256 MB of RAM, using the Red Hat 7.1 dis-
tribution of the Linux operating system. The code was
written in ANSI C. The MO fmGA algorithm was exe-
cuted ten times for each of the experiments in order to
provide statistical results. All of the results presented
here are averaged over ten runs and the Pareto Front
plots are the combined results over the ten runs. Over
all runs the following fmGA parameters were kept con-
stant; cut probability = 0.02, splice probability = 1.00,
primordial generations = 200, juxtapositional genera-
tions = 100, total generations = 300. An input schedule
was used to specify sizes of the building blocks the algo-
rithm uses and during which generations BBF occurs.
Tests were conducted using both [Met]-Enkephelin, with
240 bit length strings and BB sizes 6-10, and Polyala-
nine, with 560 bit length strings and BB sizes 16-20.

Figure 1 presents the Pareto Front found from the
[Met]-enkephlan testing. In this figure the Random CT
obtained the best distribution of points along the front,
all of the points are Pareto Front members if combined
with the other methods, as well as the largest cardinality
out of the three CT methods tested. This is expected as
[Met]-enkephlan does not contain a structure and hence
the Alpha or Beta methods do not provide better results
than the random generation of the CT.

Figure 2 presents the Pareto Front found from the
Polyalanine testing. In this figure the Alpha CT method
performed the best in terms of the overall distribution
of points along the front as well as the cardinality of
the Pareto Front set. This is expected since Polyalanine
has a alpha-helix structure and therefore the Alpha CT
should provide the best results.

The CT testing produced “good” results and results
that are anticipated considering the structure of the pro-
teins analyzed. The multiobjective (MO) implementa-
tion of the fmGA compares very favorably to the orig-
inal fmGA results regarding minimum energies. Since



(Met-enkephalin -- Tyr-Gly-Gly-Phe-Met)
Pareto Front
10.00
. ¢ Random CT = Alpha CT
H 9.00
s Beta CT
8.00
o
o 700 ¢
B
6.00 S
w
.
. t 5.00
.
‘ G HE s ss *
4.00
: : ; 3.00
-50 -40 -30 20 -10 0 10
Function 1

Figure 1: [Met]-enkephlan Pareto Front
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Figure 2: Polyalanine Pareto Front

the MO fmGA implementation involves decomposing
the summation of terms used in the original fmGA, one
can sum up the two fitnesses and obtain what the single
objective value would be and then make a limited com-
parison to the original fmGA results. Table 1 presents
the results of the best found fitness for each of the pro-
teins from the original fmGA testing and the MO fmGA
testing. For [Met]-enkephlan the MO fmGA finds the
best overall fitness value when compared with the orig-
inal fmGA. In the Polyalanine analysis, the MO fmGA
compares very favorably to the original.

Table 1: Best Fitness Found

Alpha Beta Random A R&B
Met -31.716 -33.191 -34.114 -31.834
MO Met -33.857 -37.287 -38.047 N/A
Poly -163.393 | -157.203 | -159.105 | -171.760
MO Poly | -162.246 | -156.624 | -149.052 | -171.314

5 CONCLUSIONS

We have presented the results for three different in-
novative CT generation schemes used in the MO for-
mulation of the PSP problem. The results presented in
this paper support our hypothesis that the MO version
of the fmGA would produce better results than the origi-
nal and that the Random CT scheme would perform well
in cases where the protein does not contain a structure
and a CT method that includes the structure of the pro-
tein tested would perform the best there. Future work
will look at larger proteins and other protein structures
to include TIM barrel, Sandwich, Roll, flavodoxin, and
(B-lactamase. Also addressed will be the incorporation
of a sharing mechanism to provide a better distribution
of points along the Pareto Front.
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