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ABSTRACT

The interaction of sub-micron scale objects with fluids
is an important problem encountered in miniaturized
systems. Various physical phenomena should be modeled
simultaneously for a fundamental investigation of these
systems. Our objective is to develop a direct numerical
simulation tool to better understand the motion of sub-
micron objects in complex geometries.

We report: (a) A novel methodology to simulate the
Brownian motion of objects in fluids, (b) A technique to
simulate the motion of electrically charged bodies with thin
Debye layers & (c) An innovative approach to simulate the
motion of flexible bodies. The goal is to develop numerical
techniques for each of these problems such that they can be
unified or interfaced to allow simultaneous description of
complex physical phenomena. Preliminary work has been
accomplished.

Keywords : Numerical simulation, Brownian motion,
hydrodynamic fluctuations, electrophoresis, flexible
macromolecules.

1 INTRODUCTION

Some of the key issues, commonly encountered in sub-
micron/nanoscale devices, that require further investigation
are considered here. A brief introduction to the various
methods we are pursuing will be given in this paper.

We consider numerical schemes within the realm of the
continuum hypothesis. The key issues that require further
investigation, and considered here, are the modeling of
thermal fluctuations, the motion of flexible bodies and the
motion of electrically charged bodies. Numerical
techniques for each of these problems are to be developed
such that they can be unified or interfaced to allow
simultaneous description of complex physical phenomena.

In section 2 we will discuss the simulation method for
Brownian motion. Electrophoresis will be considered in
section 3 and the motion of flexible bodies in section 4.

2 BROWNIAN MOTION

The interaction of sub-micron/nanoscale objects (such
as macromolecules or small particles or small devices) with
fluids is an important problem in small scale devices. A
better understanding of fluid dynamics is critical in e.g. bio-

molecular transport, manipulating & controlling chemical
& biological processes using small particles etc. These
objects could be moving in an environment with varying
temperatures and fluid properties (e.g. viscosity, density).
Thermal fluctuations can influence the motion of such
objects.

Direct Numerical Simulations (DNS) of particle
motion in fluids is a tool that has been developed over the
past ten years (see [1] & [7] and references therein). In this
approach the fluid equations are solved coupled with the
equations of motion of the particles. DNS allows
investigation of a wide variety of problems including
particles in Newtonian or viscoelastic fluids with constant
or varying properties. DNS can be an excellent tool to
investigate the motion of sub-micron particles in varying
fluid environments. Currently, there is no convenient way
to incorporate the effect of thermal fluctuations, important
to simulate the motion of sub-micron particles or objects, in
the governing equations. Here, we propose a new approach
to overcome this shortcoming.

The conventional approach to perform Brownian
dynamic (BD) simulations is based on the algorithm by
Ermak and McCammon [2]. It is an algorithm for
simulating the Brownian motion of N particles with the
inclusion of hydrodynamic interactions. For timescales
larger than the momentum relaxation time of the particles
or for inertia-less particles the algorithm updates the
particle positions according to
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where xn is the collective position vector of all the N
particles at the nth timestep, ∆ t is the timestep, kB is the
Boltzmann constant, T is the temperature and F  is the
collective vector of non-hydrodynamic forces on the
particles. R(xn) is the configuration dependent diffusion
tensor where R ij is its component. X i is the random
displacement vector that mimics thermal interactions with
the suspending fluid. It is a Gaussian white noise process
related to R by
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where δmn is the Kronecker delta and angle brackets
represent an average. The diffusion tensor R defines the
hydrodynamic interactions.

Obtaining the random displacement turns out to
expensive. Using the conventional Brownian dynamic
simulation methodology to objects with irregular shapes
and to cases where the fluid exhibits varying properties and
non-linearities is not straightforward. This is mainly
because of the presence of the diffusion tensor in the
expression for the random term. For the same reason, it is
difficult to use this approach to include thermal motion in
DNS schemes. A different approach is preferable and is
discussed below.

A particle suspended in a fluid experiences a
hydrodynamic force due to the average motion of the fluid
around it. The average motion of the fluid is represented by
the usual continuum equations such as the Navier-Stokes
equations. Small particles in fluids, in addition to the
average force, experience a random force due to the thermal
fluctuations in the fluid. In BD simulations the principle is
to model this thermal force from the fluid in terms of a
random term in the particle equation.

A different approach is to model the thermal
fluctuations in the fluid itself via random stress and heat
flux terms in its governing equations. A general theory of
fluctuations in fluid dynamics is given in by Landau &
Lifshitz [8]. The general formulas of fluctuation theory are
used to obtain equations of motion for the fluctuating fluid.
Given below is the momentum equation for a fluid with
hydrodynamic fluctuations (valid for non-quantized

fluctuations i.e. TBk<<ωh , where ω are the frequencies

in the fluctuations) at equilibrium, in the creeping flow
limit.
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where p is the pressure, σσσσ is the total stress at a point in the
fluid, s is the stress due to fluctuations, x1 & x2 are the
position vectors of points in the fluid domain, t1 & t2 are
two time instants and δ(t1-t2) is the Dirac delta function. An
incompressible fluid is considered. More general governing
equations for non-equilibrium, non-linear cases are
available in literature (see [3] and references therein). It can
be shown that the fluctuating hydrodynamic equations give
rise to a fluctuating force on a particle [4]. The solution of

fluid equations coupled with the equations of motion of the
particles leads to the Brownian motion of the particles.

We have used a moving mesh, Galerkin finite-element,
technique to solve the coupled fluid-particle equations of
motion [1]. This technique uses an unstructured body-fitted
mesh and a mesh update scheme to handle the time-
dependent fluid domain.

We added the fluctuating stress term in the fluid
equations. This poses no fundamental difficulty especially
because the covariance structure of the fluctuation stress is
locally defined. The random stress can then be obtained
from uncorrelated random numbers chosen from a Gaussian
distribution (note that this simplicity does not exist in
Equation 2 above).

Figure 1: Contour plots of the horizontal and vertical
velocity fluctuations in the fluid. The dark dot at the center
is the particle. In this case we have a time-step of 100 ps for

a particle in water at 20o C.

A two-dimensional code for the direct simulation of the
motion of particles in fluctuating fluids was developed.
Thermal motion of a particle in a stationary fluid was
considered (Figure 1). We assumed Stokes flow and the
particle inertia was neglected. The particle translational and
angular momentum equations, respectively, are
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where the integrals are over the particle surface, n is the
unit outward normal and r is the radius vector at a point on
the particle surface. The solution of Equation 4 coupled
with Equation 3 and the incompressibility constraint, along
with the no-slip boundary condition on the particle surface,
gives a random velocity of the particle. These are quasi-
steady simulations since the inertia terms are absent. The
random velocity thus obtained is a measure of the random
particle displacement, which is calculated by multiplying
this velocity by the time-step. The particle positions are
then explicitly updated. This approach is direct and can be
applied to arbitrarily shaped devices or objects without any
basic difficulty.

Rigorous testing of this approach is under way where
we are comparing the results with known analytical values.
Our subsequent steps will involve a more detailed
investigation of appropriate boundary conditions for
fluctuating hydrodynamics and the extension of this



approach to cases of particles in non-stationary fluids and in
fluids with varying properties and constitutive forms.

3 ELECTROPHORESIS

In this section we motivate and briefly describe the
simulation of the motion charged particles, with thin Debye
layers, under the action of an external electric field.

An insulating charged particle, of any shape, freely
suspended in an infinite viscous strong electrolyte of
constant dielectric permittivity ε and viscosity η , moves
under the action of an external electric field. More
importantly, the electric field and the velocity field are
similar and differ only in magnitude [5]. The assumptions
of a thin Debye layer and constant material properties are
critical for this similarity because that leads to the following
boundary condition at each point on the particle surface

η
εζ t

tslip
Eu −=, , (5)

where uslip,t is the tangential component of the slip between
the fluid and the particle velocities at a point on the particle
surface, Et is the tangential component of the electric field
at that point and ζ  is the ‘zeta potential’ on the particle
surface. The zeta potential arises due to the charge density
on the particle surface. The slip in the normal direction is
zero and so is the normal component of the electric field on
the surface of an insulating particle. If the zeta potential is
constant then the velocity and electric fields differ only by a
factor εζ/η. Consequently, we obtain a potential flow even
in the Stokes limit. This is due to the fact that the potential
flow satisfies the Stokes equations with appropriate slip
boundary conditions.

An immediate implication is that the disturbance due to
a sphere of radius a decays as (a/r)3, where r is the radial
distance from the sphere, instead of the usual a/r for the
Stokes flow. The similarity may be extended to large
numbers of particles at high concentrations if the material
properties are constant and if all the particles have the same
constant zeta potential.

The above similitude breaks down if the material
properties are not constant or if the zeta potentials on all the
surfaces are not same or constant. Non-constant zeta
potentials are common in many applications in
biotechnology and even in chemical engineering (colloidal
science). The breakdown of similarity implies that there
will be long range viscous interactions which can lead to
important deviations from the similitude-based solutions.
Better understanding of this phenomenon is critical for
‘microfluidic devices’ where the thin Debye layer
assumption is often reasonable. The current understanding
is largely restricted to single particle studies. A systematic
investigation that also accounts for multiparticle
interactions is yet to be accomplished.

We intend to study this problem using direct numerical
simulation techniques for solid-liquid flows. We have

developed a two-dimensional scheme for few particles in
the Stokes limit (details of this method will appear
elsewhere [6]). These are quasi-steady simulations where
the fluid-particle motion is coupled to the applied electric
field through the slip boundary condition on the particle
surface. For a given particle configuration we first solve the
Laplace equation for the electric potential with an
insulating boundary condition on the particle surfaces. Then
we solve the coupled fluid-particle equations of motion [1].
Instead of the usual no-slip boundary condition on the
particle surface we use the slip boundary condition given in
Equation 5 to model the effect of particle charge. The
material properties and zeta potential need not be constant.
The slip surface around each particle encloses a neutral
body. Hence there is no net force or torque in the Stokes
limit. The particle equations are therefore given by
Equation 4. The fluid and particle velocities are obtained
from the coupled solution procedure.

Figure 2: Numerical simulation of electrophoresis of two
particles. Color contour plot of the horizontal velocity is

shown for two cases: (a) Top figure: The two particles have
the same zeta-potential. (b) Bottom figure: The two

particles have different zeta potentials.

Figure 2 shows color contour plots of horizontal
velocity in the fluid for the electrophoresis of two particles
[6]. The external electric field is in the horizontal direction.
In the top figure, the two particles have the same zeta
potential. As expected the resultant velocity field of the
fluid is similar to the electric field. The velocity disturbance
decays fast and is short range. In the bottom figure we have
two particles with different zeta potentials. The similitude
solution is no longer valid. The Stokes flow interaction
between the two particles lead to long range velocity
disturbances in the fluid as evidenced by the velocity
contour plot.



4 MOTION OF FLEXIBLE BODIES

Long macromolecules are flexible and may be modeled
as continuum elastic rods. Coupled simulation of the
motion of an elastic body in a fluid is not straightforward.
Here, we discuss a formulation that could lead to the
development robust schemes for such simulations.

Consider a linear elastic particle freely suspended in a
fluid. For simplicity we assume that the inertia effects are
negligible. The equation for the displacement field is given
by
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where σ and κ  are material parameters of the elastic
particle, d is the displacement field, D [d] denotes the
symmetric part of the gradient of d, t is the traction vector
on the particle surface ∂P and P is the particle domain. The
net force and torque on the body is zero in the Stokes limit.
Solution of Equation 6 yields the displacement field of the
body.

N. Patankar et al. [7] recently proposed a formulation
for the DNS of rigid particles that is relevant to the above
problem. Their idea is to consider the rigid particle as a
fluid and then to constrain this fluid to move rigidly by
setting the deformation-rate tensor, D[u], equal to zero.
This constraint can be given as
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where u is the velocity field in the particle domain.
Equation 7 is the equation of constraint that sets D[u] = 0 in
the particle domain. Note that we have chosen a rigidity
constraint using the material parameters for the elastic body
in Equation 6. It can be shown that the rigidity constraint
leads to a Lagrange multiplier λλλλ , which is a vector field [7].
Consequently, the momentum equation of the particle
modeled as a fluid and the boundary condition on its
surface become [7]
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where we have neglected inertia. The physical significance
of λλλλ  is evident from the difference between Equations 6 and
8. It is clear from the comparison that λλλλ is the displacement
field of the elastic body whose parameters were used in the
rigidity constraint (Equation 7).

The key conclusion of the above analysis is that the
rigidity constraint can be used to obtain the displacement
field of an elastic body. This result can be used to perform
‘quasi-rigid’ simulations of elastic bodies. In such an

approach we would solve the fluid-particle equations by
assuming the elastic particles to be rigid. The coupled
solution would not only give the particle velocity (which
represents its rigid motion) but also the displacement field
of the elastic body [7]. The position and the shape of the
particle would then be updated using this solution. This
approach is applicable when the elastic deformation is
small compared to its rigid motion (this requirement is
mainly related to the no-slip boundary condition on the
fluid-particle interface). We are investigating how these
ideas could be extended to simulate the motion of objects
with large deformations and to non-linear elastic bodies.

5 CONCLUSION

In this paper we have briefly discussed the numerical
techniques we are developing for the Brownian motion of
bodies in fluids, electrophoresis and the motion of flexible
bodies in fluids. Although each of these techniques is being
independently explored they can ultimately be combined or
interfaced, without any fundamental difficulty, to simulate
complex multi-physics problems.
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