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ABSTRACT

We present a 3D adhesion model based on the JKR
theory applied locally for all contacting asperity couple and
the calculations account the van der Waals interaction
beside the externally applied force. Thus, equilibrium of the
system is determined by an extremum in the free total
energy and subsequently the contact and the adhesion
parameters are computed for that particular position. The
model estimates the adhesion of contacting arbitrary rough
surfaces taking into account that asperities deform
according to one of the three deformation regimes (elastic,
elasto-plastic and plastic). The deformation of the
contacting asperities is determined by the material
properties, the asperity characteristics as well as the surface
topography. Results show that even outside the bonding
regime the specific bonding energy is still high enough to
cause adhesive problems for microstructures.

Keywords: adhesion model, surface topography, bonding
energy, deformation regime, microstructures.

1 INTRODUCTION

The quick spread of microstructure usage demands an
optimised design in order to provide increased reliability.
Contacting microstructures generally cease to work
properly after a certain period due to the modification of the
surface topography caused by adhesion, stiction and
friction. The concern about adhesion models has the origin
back in the years of sixties when authors studied the
behaviour of spherical objects pressed against flat planes
and the developed models were mostly built up on the
Hertzian contact. Almost at the same time appeared the
JKR [4] and the DMT [10] models that later have been
included in an adhesion map by Johnson and Williams and
the validity of the models was confined. The M-D model
[8] represents the transition region between them, but the
drawback of all these models is that they can be applied for
single asperity contacts and not for arbitrary rough surfaces.
Later, authors developed multi-contact models [1,2]
including adhesion loads by combining the G-W contact
theory [3] or the M-B contact theory for fractal surfaces [9]
with one of the single asperity adhesive contact models.

Adhesion has also been investigated by measuring the
detachment length of cantilever beams [6] and doubly
clamped beams [7] for any particular condition. The

importance of predicting the adhesion strength is growing
with the complexity of the MEMS devices and the tendency
to reduce their dimensions to the lower limit.

2 THE MODEL

 The 3D adhesion model is developed on the JKR theory
[4], applied locally for each contacting asperity couple. The
choice for this particular theory has been determined by the
adhesion consideration inside the contact area and the
possibility to regard the van der Waals interaction between
surfaces when there is no contact as external load applied to
the contacting asperities.

The model is applicable for both, computed or measured
surfaces. The limitation of the measured surfaces is the
convolution effect due to the probing, while for computed
surfaces the very spiky asperities must be avoided because
of the finite atom radius. This can be achieved by
interpolating the three-dimensional surface profile in x and
y directions. Computational surfaces can be obtained either
by using certain distribution functions if the surface
topography parameters are known from previous
measurements or by using fractal surfaces. The contacting
surfaces can be described then by the functions z1(x,y) and
z2(x,y) as shown for example in fig. 1.

The surfaces are divided in finite areas similarly to the
meshing for finite element analysis. It has been observed
that the adhesion is time dependent and because the time
dependence is not known, the incremental approach of the
upper surface to the surface below is used. Eq. (1) describes
how the position of the surfaces vary with the iteration step:
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where 0..sk = is the iteration step and _ is the incremental
distance. For the sake of not complicating the formulas we
will neglect the iteration step indices.

2.1 Forces

Since the weight of the microstructures is usually very
small due to the relatively thin layers that can be micro-
machined, it can be neglected comparatively to other forces
that appear.

When contact occurs between two surfaces the adhesion



lays upon five mechanisms: van der Waals interaction,
electrostatic forces, capillary forces, hydrogen bridging and
the asperity deformation forces. The model accounts these
mechanisms by considering the interfacial energy in the
contact regions according to [4].

An attractive force will be created outside the contact
regions, which can be regarded as an additional term to the
externally applied load. Two mechanisms can contribute to
this force. Even where there is no contact but the surfaces
are in close proximity the van der Waals interaction plays
an important role and the force due to this mechanism is:
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where H is the Hamaker constant, d is the mean value of the
distance between finite areas.

Charging can occur accidentally or by purpose between
surfaces, while the normal forces for MEMS devices are
mostly created by electrostatic attraction:
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where t is the thickness of the insulator layer (typically 0.5-
1 _m) and U is the applied voltage.

The model can account for mechanically applied loads
Fm by simply adding it to the normal load.

Then, the total normal load F that must be distributed on
the contacting asperities is obtained by the summation of
Fw, Fe and Fm.

2.2 Computational ground

Analysing the sign function defined by eq. (4) the
contact areas and the non-contact areas can be separated
like in fig. 2. The computations showed that is important to
take into account the three-dimensional asperity shapes and
positions because the tilt angle _ between the planes
defined by the perimeters of the interferences and the
horizontal plane can vary up to 10-11 degrees (fig. 3).
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In the regions where the surface profiles would
theoretically interfere, the dimensions of the areas
determined by the perimeters of the interferences are
computed in x and y directions and then used for
substituting the asperities with spherical cap shaped ones.
The radii of the base planes of the spherical caps rc will be
equal to half of the mean value of those dimensions. The
distance between the centre point of the base plane and the
value of the profile function for the x and y coordinates of
the centre point determines the height δc of each spherical
cap. The radius of the spherical cap can be determined by
forcing a circle to pass through three points of its cross
section.

Having the radii of the contacting asperities for both
surfaces we have the possibility to apply the JKR adhesive
model for the asperity couples. In order to simplify the
algorithm and to gain computation speed, the contacting
asperities have been renumbered and thus vectors have
been used in further calculations instead of matrixes. The
composite radii for all p asperity couples will be:
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Due to the finite compliance of the matter and random
distribution of the asperities the total normal load must be
distributed according to their geometrical characteristics:
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Figure 2: Area separation. Figure 3: Tilt angle _.

Figure 1: Simulation of two contacting surfaces.

z1(x,y)

z2(x,y)



where rc and _c are defined above.
The apparent contact load for the contacting asperities due
to the interfacial energy can be obtained by modifying the
JKR formula [4] for the apparent contact load:
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The equilibrium position of the surfaces can be determined
with the free total energy Et of the system eq. (8), which
consists of the mechanical energy Em of the normal loads,
the surface energy Es and the stored elastic energy Ee.
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Some of the previous multi-contact model reports
[1,2,3] considered elastic deformation of the asperities and
defined the limitation of the models using the plasticity
index. Due to different sizes of the contacting asperities the
plasticity index of each contacting asperity couple will be
different as follows:
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where σ is the composite standard deviation, E is the
composite elasticity modulus and Ha is the hardness of the
softer material.

The authors propose a way to include all three
deformation regimes, namely the elastic deformation
regime 0.6≤ϕ , the fully plastic deformation regime

1.1>ϕ  and the intermediate regime (elasto-plastic). It can

be observed that the stored elastic energy accounts for all
three deformation regimes, eq. (10.2).
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The iteration stops when the incremental free total energy
becomes zero and the adhesive contact parameters can be
calculated such as the real contact area, the pull-off force
and the modified surface topography. Generalising the pull-
off force of the single asperity adhesive contact and adding
the van der Waals force because this must also be over-

come, will give us the pull-off force of the plates, eq. (11).
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The topography of the surfaces modifies due to the
deformation of the asperities in plastic and intermediate
regimes (fig. 5). Returning to the numbering system of the
finite areas, a matrix of plasticity index must be constructed
in order to allow the computation of the modified surfaces.
The plasticity index matrix is built up with nil elements
where there is no contact and the subsequent plasticity
index for each contacting asperity in the region where they
are placed. Considering the hardness of the contacting
materials, two cases must be defined: (1) if the hardness of
the materials are nearly the same aa H1/H2H1 ≤≤⋅ , then
the deformation of the surface profiles is according to eq.
(12) with deformations in all three regimes; (2) if not, then
the harder material will deform the softer one according to
eq. (13). The real contact area is calculated by addition of
the finite surfaces where the modified surface profiles
would touch each other at equilibrium (fig. 4).
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The modified surface profile of the upper surface is
calculated with similar considerations. Notice that a is
usually in the range of 0.9-0.95 and it depends on the place
of the contacting materials on the Mohr scale.

3 RESULTS

Because a large part of the contacts for MEMS devices
is represented by the polysilicon-polysilicon contact and
because silicon wafer bonding is of high importance,
contact between two silicon plates has been simulated and
the results have been compared with a previous model and
experiments [2]. Figure 4 shows the importance of the
interfacial energy in establishing the equilibrium position of
the plates.
A cross section view of the surface profile before and after
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pull-off (fig. 5) proves that not all the asperities deform in
the same regime and the deformation is depending on the
characteristics of each asperity.

A mean value of the adhesion parameter _ has been
considered in order to allow a comparison with other
models:
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The results presented in fig. 6 show that even outside
the bonding regime 1è < , the specific bonding energy is
still high enough to cause adhesive problems for
microstructures. If some asperities deform plastically or
according to the intermediate region, then the iteration stops
few steps later relative to the case when only elastic
deformations occur due to the stored elastic energy

diminution. Thus, the real surface area as well as the pull-
off force will increase as one can see in fig. 6,7.

For very rough surfaces the van der Waals interaction is
weak due to large separation distances between the
subsequent finite areas.

CONCLUSIONS

We have presented a numerical model that is capable of
successfully estimating adhesive forces between two
arbitrary surfaces taking into account van der Waals forces,
normal forces, elastic and plastic deformation of the
contacting asperities.

The topography modification is a consequence of the
interaction between asperities and it is guided by the
material properties and the topography parameters.

The van der Waals interaction can be strong when the
surfaces are not in touch but in close proximity. Some
asperities will deform plastically even if external loads are
not applied.

If there are asperities that do not deform elastically, then
the real contact area will be larger and the pull-off force
will be higher than in the case of only elastic deformations.

Even outside the bonding regime the specific bonding
energy is still high enough to cause adhesive problems for
microstructures.

The model can also serve as a ground for static friction
study at micro/nanoscale between surfaces.
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(a) (b)

Figure 4: Contact interfaces for (a) _ = 1; (b) _ = 2.8.

Figure 5: Topography modification.
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Figure 6: Normalized bonding energy variation.
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Figure 7: Normalized contact area variation.
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