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ABSTRACT

One of the possible applications of the quantum
dots is in a new generation of photovoltaic cells.
Theory predicts the efficiency of these based
solar cells to be up to 63 percent, which is
substantially higher than the theoretical limits
existing in mono crystal solar cells (34% ) or
hetero junction (39 % three junctions and 42 %
four junctions).  The differences in thermoelastic
properties between the quantum dots and
substrate materials, such as thermal expansion
and lattice mismatch, will cause residual stresses.
These stresses in turn will affect the electronic
and transport properties in the quantum dots.
With the available thermoelastic properties and
finite element modeling method, the residual
stress distribution will be studied.  Various
factors, such as geometry, thickness and size,
will be discussed.
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1. INTRODUCTION

    Quantum dots considered here are fabricated
by growing nanometer-sized metallic materials
on various semiconductor substrates.  They have
broad area of applications as for instance
theoretically they are the most promising in
photovoltaic cells with a potential of 63%
efficiency [1,2].  Due to the differences in
materials properties used in their creation,
residual strain and stresses are usually generated
at the interfaces and inside the quantum dots.
These stresses consequently modify the
electronic and transport properties in quantum
dots.  There are two main sources that contribute
to the residual stresses, one is the lattice
mismatch between substrate and a quantum dot,
the other is the difference of the coefficient of
thermal expansion between quantum dots and
substrate materials.  Here, we will discuss the
effects of these two major factors on the

distribution of residual stresses in quantum dots.
The effects of size, geometry, and deposition
temperature will also be discussed.

2. LATTICE MISMATCH

For quantum dots with lattice parameter aq

grown on a substrate with lattice parameter aS,

the in-plane strain at the interface is [3]
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If the thickness is less than the critical thickness,
the quantum dots remain pseudomorphic.  If the
thickness is larger than the critical thickness,
misfit dislocations are generated in the interface
to relax the misfit strain [3].  For isotropic
materials, distribution of residual stresses/strains
sometimes can be found in closed form for high
symmetric geometries [4].  In most cases, in
materials with anisotropic thermoelastic
properties and irregular shapes, distribution of
residual stresses can not be found in closed form.
Numerical methods, such as finite element or
finite difference method, have to be employed to
solve the problem.  Bimberg et al. [4] have
provided a comprehensive review on the
modeling work published in literature prior to
1998. Here, an estimate of the maximum residual
stress caused by the lattice mismatch in a gold
dot grown on silicon substrate with cylindrical
geometry will be provided.

3. THERMAL RESIDUAL
STRESSES

For quantum dots fabricated at high
temperatures, after the sample is cooled down to
the room temperature, the differences in the
coefficient of thermal expansion between the
dots and the substrate materials will introduce
residual stresses within the sample.  The strain
tensor can be described by [5]
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Where ε,i j  is the strain tensor, σk j  is the stress
tensor, α ij is the thermal expansion tensor, sT

ijkl

are the compliance of the crystal, and ∆T is the
temperature drop in the system.  The equilibrium
equations of the system are
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where fi are the body forces per unit volume
acting on the system.  In equations (2) and (3),
the indices i, j, k, l have values 1, 2, and 3.  The
thermal residual stresses for arbitrary shape with
isotropic or anisotropic material properties can
be calculated by numerical modeling approaches,
such as finite element method or finite difference
approximation.

      Here, a finite element code PDE2, developed
and distributed by Macsyma, is utilized to model
the thermal residual stress distribution.  The
effects of fabrication temperature, the size of the
quantum dot have also been investigated.

4. CONCLUSIONS AND
DISCUSSION

      In this paper, the residual stresses existed in
quantum dots have been studied.  The two major
sources of residual stresses in quantum dots were
separately examined.  The effects of these two
sources will be compared and the dominant
factors will be identified.  The distribution of
residual stresses within the quantum dot has also
been calculated by a finite element method.  This
provides a base for further work on the
calculation of electronic and transport properties
within the quantum dots. In order to accomplish
this, the potential field induced by the residual
strain can be calculated from the distribution of
residual strain.  This extra potential caused by
the residual strain and the original potential field
of the valance band both can then be included in
the time-independent Schrödinger equation to
calculate the energies and wave functions of the
valance band.  Johnson et al. [6] have applied
finite element method to calculate both the
residual stress and the electronic and transport
properties in SixGe1-x quantum wires and
quantum dots.  Their calculations were
consistent with experimental results [7,8].  They

also demonstrated that the densities of state for
electrons in SixGe1-x quantum wires and quantum
dots indeed change with the residual stresses [6].
In our next step, the residual stress distribution
for a gold quantum dot grown on silicon
substrate calculated by the finite element method
will be incorporated in our newly developed
approach for solving a time-independent
Schrödinger equation.  The energies and wave
functions of the valance band can then be
calculated.  Our final goal is to understand the
effects of size, strain, composition and other
parameters on the electronic and transport
properties in order to improve the quality of the
devices.
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