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ABSTRACT

Quantum effects have been reported to play an important
role in the operation of narrow width SOI devices, in which
the carriers experience a two dimensional confinement in a
square quantum well at the semiconductor-oxide interface.
This results not only in a significant increase in the
threshold voltage but also in its pronounced channel width
dependency. Typical method to simulate these effects is a
simultaneous solution of the Schrédinger and Poisson
equations, which can be a very time consuming procedure.
An alternative way is to use the recently developed effective

potential approach that takes into account the natural non-

zero size of an electron wave packet in theantized
system. Inthis work, we have applied the effective potential
approach in a recently proposed SOI device structure to
quantify these effects. In a second effort we utilize the
Landauer’s formalism to calculate the on-state current
quantum mechanically and estimate the increase in device
threshold voltage due to the lateral quantization.
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1 INTRODUCTION

1.1 Market Forces and the State of the Art

For quite some time, the dimensions of semiconductor
devices have been scaled aggressively in order to meet the
demands of reduced cost per function on a chip used in
modern integrated circuits. There are some problems
associated with device scaling, however. Critical
dimensions, such as transistor gate length and oxide
thickness, are reaching physical limitations. Considering
the manufacturing issues, photolithography becomes
difficult as the feature sizes approach the wavelength of
ultraviolet light. In addition, it is difficult to control the
oxide thickness when the oxide is made up of just a few
monolayers. In addition to the processing issues, there are
also some fundamental device issues. As the oxide
thickness becomes very thin, the gate leakage current due
to tunneling increases drastically. This significantly affects
the power requirements of the chip and the oxide
reliability. Short-channel effects (SCEs), such as drain-
induced barrier lowering (DIBL) and the Early effect in

bipolar junction transistors (BJTs), degrade the device
performance. Hot carriers also degrade device reliability.

A solution to the above mentioned problem, in order to
achieving enhanced device performance, is to use silicon-
on-insulator (SOI) materials. Devices fabricated in this way
are also found to be advantageous over their bulk silicon
counterparts in terms of reduced parasitic capacitances,
reduced leakage currents, increased radiation hardness, as
well as inexpensive fabrication process. IBM launched the
first fully functional SOI mainstream microprocessor in
1999 marking that SOI technology was becoming the state-
of the art technology for future low-power ICs. An SOI
SIMOX (separation by implanted oxygen) substrate with
partially depleted epitaxial films (greater than 0.15 micron)
has been used for this purpose following a 0.22-micron
technology. With this effort, the IBM specifications predict
a 25-35% improvement over its bulk CMOS counterpart,
which is equivalent to about two years of progress in bulk
CMOS design and fabrication processes [1].

1.2 Device Structures in SOI System

With regard to silicon on insulator (SOI) devices, they
can be classified into two broad categories, partially-
depleted (PD) and fully-depleted (FD) SOI devices. With
significant number of investigations, it has been shown that
FD-SOI technology has the advantages over PD-SOI
technology with regard to lower junction capacitance and
better subthreshold swing [2]. However, the conventional
fully-depleted SOI MOSFET is known to have worse short-
channel effects than bulk MOSFETSs and partially-depleted
SOI MOSFETs [3]. It has been shown recently that the
ultra-thin body (UTB) device structure proposed by Choi et
al. [4] and schematically shown in Figure 1 eliminates the
leakage paths between source and drain. Nearly all the
leakage current at V= 0 V in the Ts; = 7 nm flows along
the bottom 2 nm of the body, which is least strongly
controlled by the gate. Therefore, by eliminating these 2
nm, i.e. making 7s; = 5 nm can reduce the leakage by 30
times in this device structure.

It has also been reported that in both PD and FD-SOI
devices there occurs a threshold voltage increase that
depends upon both the impurity concentration and the SOI
thickness because the inversion layer is very thin but as
wide as normal gate electrode.
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Figure 1. Schematic of an ultra-thin body SOl MOSFET.

However, in an ultra-narrow SOl MOSFET proposed by
Majima et al. [5], schematically shown in Figure 2, the
threshold voltage depends not only on the SOI thickness but
also on the channel width, because horizontal carrier
confinement also takes place in the narrow channel. It has
been referred to this channel width dependency of the
threshold voltage by quantum confinement as the quantum
mechanical narrow channel effect.

Due to the experimental evidence of threshold voltage
shift and the observation of Coulomb-blockade effects in
the narrowest-width devices from Figure 2, it is our goal to
investigate transfer characteristics of narrow-width FD-SOI
MOSFETs.
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Figure 2. Device structure of ultra-narrow channel FD-SOI
device structure.

1.3 Effective Potential for Device Simulation

With the scaling of devices down to nm range, it
becomes challenging to approximate the quantum effects
and to have device simulation tools that are able to deal
with multiple levels of length scales and complexity, from
the quantum regime down to the classical regime. For this
purpose, increasing interest is being focused on the use of
quantum mechanically derived potentials that may be
added as corrections to semi-classical simulation tools.
The idea of quantum potentials derives from the
hydrodynamic formulation of the quantum mechanics and
was first introduced by de Broglie and Madelung [6,7] and
later developed by Bohm [8]. In this picture, the wave
function is written in complex form in terms of its

amplitude and phase Y(r,?) = R(r,t) exp[iS(r,t)/h] . When
substituted back into the Schrodinger equation it leads to
coupled equations of motion that have the form of the
classical hydrodynamic equations with the addition of an
extra potential, often referred to as the quantum or Bohm
potential, written as
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where the square root of the density 7, represents the
magnitude of the wave function R. The Bohm potential is
essentially a field through which the particle interacts with
itself. It has been used, for example, in the study of wave
packet tunneling through barriers [9].

In analogy to the smoothed potential representation
discussed above for the quantum hydrodynamic models, it
is desirable to define a smooth quantum potential for use in
quantum particle based simulation. Ferry [10] suggested an
effective potential that is derived from a wave packet
description of particle motion. Within this formulation, the
effective potential Vg is related to the self-consistent
Hartree potential ¥, obtained from the Poisson equation,
through an integral smoothing relation

(1
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where G is a Gaussian with standard deviation a,. This
effective potential Vg is then used to calculate the electric
field that accelerates the carriers in the transport simulator
described in more details in [11]. The use of Vs has fairly
low computational cost with less than 10% increase in CPU
time.

2 SIMULATION RESULTS

The device structure we simulate is a narrow channel
silicon on insulator (SOI) device (see Fig. 2) that consist of
a thick silicon substrate, on top of which is grown 400 nm
of buried oxide. The thickness of the silicon on insulator
layer is 7 nm, with p” region width between 5 and 15 nm.
On top of the SOI layer sits gate-oxide layer, the thickness
of which is 34 nm.

When simulating this device structure we employ two
different methods:

1. The effective potential approach in parallel with the
self-consistent solution of the 2D Schrodinger
equation, to calculate the line electron density.

2. Use of the classical solution of the electrostatic
confinement combined with the Landauer’s approach
to calculate the on-state current as a function of the
gate voltage.

The description of these two methods and the discussion
of the simulation results obtained are given below.



(A) Effective potential approach versus self-consistent
solution of the 2D Schrodinger equation

When solving the 2D Schrédinger equation, we have
taken into account the pronounced mass anisotropy in the Si
material system and the multi-valley nature of the lowest
conduction bands. Namely, the six conduction band valleys
in Si are included through a standard three-valley model.
Valley pair 1 points along the (100) direction having m, =
m = 091my and my = m, = m; = 0.19my. Valley pair 2
points towards the (010) direction and has my = m, = m, and
my = m, and valley pair 3 points in the (001) direction,
having my = my, = m, and m, = m,. As a result of the above, at
each iteration step, we solve the 2D Schrddinger equation,

of the form
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three times, i.e. for each equivalent valley pair V. Once
the energy eigenstates and the corresponding eigenfunctions
are known, the electron density is found by using
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where the factor of 2 accounts for valley degeneracy, the
double sum represents summation over all energy
eigenstates (index ;) belonging to each of the three valley
pairs (index V) and the line charge density is given by
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where T'is the temperature and kg isthe Boltzmann
constant. In the actual evaluation of the Fermi-Dirac
integral of order -1/2, which appears in Eq. (5), we use the
approximate expression given in [12].
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Figure 3. Variation of the line charge density for a quantum
wire that represents the channel region of the SOI device
structure of Fig. 2. The wire width equals 7, 10 and 15 nm.

The calculated gate-voltage dependence of the line density,
for the test device structure with homogeneous confinement
along the x-axis, is shown in Fig. 3. For each wire width (7,
10 and 15 nm) we use both, the effective potential approach
discussed in Section 1, and the self-consistent solution of
the 2D Schrodinger-3D Poisson problem. Excellent
agreement is observed between the two approaches when
using the theoretical value for the Gaussian smoothing
parameter of 0.64 nm. This result suggests that the
effective potential approach can be successfully used for
more complicated confining potentials.

(B) Classical solution combined with Landauer's
formalism

Another approach to modeling the SOI device is to
think of it as quantum wire. This viewpoint is particularly
useful in the ballistic regime, where most of the scattering
comes from the device boundaries. As channel lengths
become shorter, it becomes increasingly more appropriate
to model devices in this manner.

A quantum wire is essentially a waveguide for
propagating electron waves. Depending on the electron
density and the width of the wire, only a certain number of
quantized modes are allowed to propagate. The amount of
current that is passed by the device then depends on the
transmission probability of these modes. According to the
formalism originally developed by Landauer [13] and
extended by Biittiker [14], the source-drain current, /p, can
be expressed as the integral

Ip -—J(f J(E -eVpg) )Z|fnm E VDS’VG1 dE (6)

where Vpg is the voltage drop from source to drain, f{E)
is the Fermi function for energy FE, and t,, is the
transmission amplitude going from mode 7 to mode m, and
the summation is over all propagating modes. Thus,
obtaining the current comes down to computing these
quantum mechanical transmission amplitudes. There are a
number of different ways for doing this, but a method that
we have used with great success is that of Usuki et al. [15],
who developed an approach based on numerically stabilized
variant of the transfer matrix method. To begin, the
Schrodinger equation is mapped on to a finite difference
mesh on a square lattice of lattice cons@nSince the
wires are of finite widthextending a given numbeM]j of
lattice sites across, one can work in terms of slices, where
Y is a M-dimensional vector containing the wave function
amplitudes of thgth slice. The discretized Schrodinger
equation, keeping terms up to first order in the
approximation of the derivative, has the form:

(E-Hj)@;+H; ;o +H; iy 4 =0 (7

In the above equation, the H; matrices represent
Hamiltonians for individual slices, and the matriegg, and
H;;1 give the inter-slice coupling. By approximating the



derivative by finite differences, the kinetic energy terms of
Schrddinger’s equation get mapped onto a tight-binding

model witht = - /1%2m*a? representing nearest neighbor
hopping. The potentidV at site {,j) simply adds to the on-
site energies, which appear along the diagonal owaje

matrices. Transfer matrices that allow translation from

source to drain can be derived using (7). These allow the
modes of the wire to be determined. Setting the boundary
condition that these modes are occupied on the source end

with unit amplitude, one obtains the transmission
amplitudes that enter (6) byanslating across theystem.

By using some clever matrix manipulations, Usuki
overcame the problems created by the exponentially
growing and decaying contributions of evanescent modes.
Rather than just multiplying transfer matrices, the
translation scheme is turned into an iterative procedure,
which provides numerical stability bgot allowing the
evanescent contributions to diverge.
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Figure 4. Transfer characteristics of the SOI device with
channel width equal to 5, 7, 10 and 13 nm. The drain
voltageV, equals 10 mV.

Simulation results for the device transfer

characteristics, that utilize the above described approach, 1926

are shown in Fig. 4. The channel width equal to 5, 7, 10

and 13 nm. We observe drastic decrease of the drain

current with decreasing the channel width due to the lateral
space-quantization effect. This observation is more clearly
seen from the results shown in Figure 5, where we plot the
device threshold voltage as a function of the channel width.
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Figure 5. Threshold voltage as a function of the gate
width.

charge from the interface, and a quantization energy within
the channel. Both of these effects lead to an increase in the
threshold voltage, which is apparent in the output
characteristics of the device itself. We also found a drastic
increase in the threshold voltage with decreasing the channel
width.
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