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ABSTRACT

We present Monte Carlo simulation results for the mo-
tion of long linear polyelectrolytes inside a microchannel of
molecular dimensions, structured as a periodic array of wells
linked by narrow constrictions. Molecules are driven in the
channel by a low-intensity electric field, which we model re-
alistically by solving the Laplace equation numerically inside
the channel. Our results agree with the counterintuitive ex-
perimental observation that longer molecules advance faster
than shorter ones, and we show how this separation capabil-
ity is related to the conformational changes of the molecule
as it approaches a constriction. We further discuss possi-
ble improvements to the original channel design using pulsed
fields, notably by exploiting ratchet operating modes and res-
onance effects. We support these new ideas with calculations
in the zero-frequency limit and simulations in the finite fre-
quency domain.
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1 INTRODUCTION

The advent of microfluidics in the field of molecular biol-
ogy offers exciting prospects. Current development focuses
on DNA separation techniques (in an effort to optimize gene
mapping and sequencing), but devices on which the prepara-
tion, sorting and detection of biomolecules is streamlined and
integrated with analysis tools are already envisioned. Char-
acterizing and understanding the behavior of biological mo-
lecules in small conduits is a necessary step towards this goal.
The dynamics of these molecules — typically polymers — is

Figure 1: A two-dimensional side view of the channel struc-
ture used for the simulation. The field lines and a molecule
of sizeN = 600 are shown.

quite different from that of simple fluids, as it is often dom-
inated by their internal entropy. On the other hand, entropy
represents a supplementary molecular variable one can ex-
ploit to achieve faster and better separations. This aspect has
up to now been largely underestimated.

In this paper we focus on a microchannel device fabri-
cated by Han et al. (see figure 1) and recently used for the
separation of double-stranded DNA (dsDNA) fragments by
size, in the tens of kilobasepairs (kbp) range [1,2]. Mole-
cules are electrophoresed through a series of traps by a con-
stant (dc) electric field. We model this system with the bond-
fluctuation algorithm in three dimensions [3,4]. We first in-
vestigate the behavior of the molecules in the dc regime, and
then extend our work to the case of time-varying (ac) driv-
ing fields. In particular, we study whether strategies based
on ratchet-like ideas [5,6] and resonance effects can lead to
increased performance.

2 THEORY

Let us start by defining key quantities we will refer to
throughout this note. TakingV as the global potential dif-
ference applied across the channel period of lengthL (see
figure 1),a as the side of one bond-fluctuation lattice cell,
andkBT as the unit of thermal energy, we define a dimen-
sionless measure of the field strengthε = (aqV )/(LkBT ).
The speedv(ε,N) of the molecules (whereN stands for the
molecular size) and their electrophoretic mobility

µ(ε,N) = v(ε,N)/ε (1)

then follow as the basic quantities we use to assess the sepa-
ration capability of the device. We denote byµ0 the mobility
of the molecules in free solution (in a channel without con-
strictions), which is independent of field strength and molec-
ular size.

A theoretical model has been proposed by Han et al. [1]
for the motion of long polyelectrolytes driven by a dc elec-
tric field in their microchannel device. Takingτ as the mean
trapping time at the entrance of the narrow gap andttr as the
time it takes to travel over one periodL of the channel (in the
absence of trapping), they write the intuitive relationship:

µ(ε,N)
µ0

∼ 1
1 + τ/ttr

. (2)



Figure 2: The normalized mobility as a function of the dc
driving field strength. The curves are fits to the simulation
data points using eq 4.

Obviously,ttr ∼ 1/ε for simple electrophoretic drift. Based
on entropic trapping arguments, Han et al. also derive [1] the
approximate relation

τ(ε,N) ≈ τ0(N) e−κ/ε . (3)

To our knowledge, no theory has been put forth to ac-
count for the migration behavior of the molecules when sub-
jected to an ac driving field in this type of channel. In the
next section, we build upon our dc results to calculate the ve-
locity of the molecules in the ac case in the zero-frequency
limit and we propose a phenomenological model to explain
finite-frequency simulation results.

3 RESULTS AND DICUSSION

3.1 dc regime

Simulation results for the mobility of the polyelectrolytes
in the microchannel are shown in Figure 2, as a function of
the applied dc field strength. Each set of points corresponds
to a different molecular size, and we see that longer mole-
cules migrate faster than shorter ones, in agreement with ex-
perimental observation [1,2]. We can describe our simulation
results quite well with a variant of eq 1 where we allow some
additional dependence on the molecular size, namely:

µ(ε,N)
µ0

=
α(N)

1 + β(N) ε eκ(N)/ε
. (4)

By fitting our data with such a function, we obtain an ap-
propriate set of parameters(α, β, γ) for each molecular size.
We forego discussing the meaning of theN dependence of

Figure 3: Velocity of macromolecules in a symmetric chan-
nel with a ZIFE driving field pulse (in the zero-frequency
limit), as a function of the field ratiorε, for ε1 = 0.008.

these parameters, since our main goal here is to obtain an an-
alytical representation of our data. In what follows we use
these functions to compute velocities in the zero-frequency
ac limit.

3.2 ratchet regime

The curves in Figure 2 show that the velocity of the mole-
cules inside the channel does not increase linearly with field
strength (in which caseµ would be constant). This implies
that we can operate the device in the ratchet mode, in which
we can impart net motion to the molecules with a null time-
averaged force. Consider a square pulse of the type used
in zero-integrated-field electrophoresis (ZIFE) [5,6]: period-
ically, a field of strengthε1 > 0 and durationt1 is followed
by a field of strengthε2 = −rεε1 and durationt2 = t1/rε,
where0 < rε < 1. We verify that the net applied field
εnet = (ε1t1 + ε2t2)/(t1 + t2) indeed vanishes.

In the limit of longt1 andt2, we can resort to our dc fits to
calculate the velocity of the molecules under such conditions,
since both sections of the square pulse correspond to a dc
situation. Using indices 1 and 2 to refer to the first and second
part of the pulse respectively, and realizing thatµ(ε,N) =
µ(−ε,N) owing to the symmetry of the channel, we write
the velocity of the molecules in the ratchet mode as:

vr =
µ(ε1, N)ε1t1 + µ(ε2, N)ε2t2

t1 + t2
(5)

=
ε1

1 + 1/rε
[µ(ε1, N)− µ(ε1rε, N) ] .

In Figure 3 we plotvr as a function ofrε for ε1 = 0.008
and three values ofN . In our graphs we normalize veloci-



Figure 4: Normalized velocity of the macromolecules in a
symmetric channel and a biased ratchet driving field, as a
function of rt, for ε1 = 0.008 and rε = 0.5. The inset,
showing the actual displacement of molecules of sizes50 and
200 as a function of time during an explicit low-frequency
simulation withrt = 0.2 (corresponding to the black dots in
the main figure), confirms bidirectional transport.

ties with respect tov0 = 2×10−5 a/mcs (which is a typi-
cal velocity of the molecules in the best dc separation region
aroundε = 0.004). We first observe that the molecules in-
deed acquire a significant velocity under zero net force and
thatv = 0 whenrε = 1, as required by symmetry. But the
most striking feature of Figure 3 is that the elution order of
the different molecular sizes, or bands, can be reversed com-
pared to the dc case.

This inversion is most interesting, as we can exploit it in
the following way. Suppose we bias the ZIFE pulse slightly
in the negative direction (the direction ofε2 < 0). This bias
will reduce the net drift of the molecules, and we therefore
expect the curves in Figure 3 to shift down vertically. Since
the dc electrophoretic drift is more important for large mo-
lecules than for small ones, the curves will remain separated
and will cross zero at different points. Hencethe net drift
direction will depend on molecular size. One way to im-
pose such a bias is to modify the original ZIFE pulse to take
longer strides in the direction ofε2. Defining a new ratio
rt = t1/t2 and following a similar derivation as in eq 5, we
obtain an expression for the velocity of the molecules in the
biased ratchet:

vbr =
ε1rt

1 + rt

[
µ(ε1, N)− rε

rt
µ(rεε1, N)

]
(6)

In Figure 4 we plotvbr as a function ofrt, for ε1 = 0.008,
rε = 0.5, and three values of the molecular sizeN . We find

that for an appropriate choice ofrt theN = 50 andN =
200 molecules, for example, move in opposite directions (see
figure inset). More significantly, it becomes possible to elute
the different bandsone by oneby sweeping across a range of
rt values during a separation, a feature that may dramatically
improve the separation capability of the device, especially if
the latter is used for preparative electrophoresis.

3.3 finite frequency ac regime

In order to investigate the finite-frequency ac response of
the system, we collect data from simulations in which the
electric field explicitly follows a square pulse of periodT
that alternates between two positive field values (T is not
to be confused with temperature, which in our context only
appears in the factor definition of the dimensionless field in-
tensityε). We chooseε1 = 0.007 andε2 = 0.003, for a net
global fieldεnet = (ε1 + ε2)/2 = 0.005. Out of the many
time scales in the system, the one most likely to harbor a res-
onance in the drift velocity lies around2 τ(ε1, N), i.e. twice
the mean trapping time atε = ε1. Indeed, ifT/2 < τ , then
the probability that a molecule escapes during the most favor-
ableε1 half of the pulse period is greatly reduced. However
if T/2 > τ , then the pulse becomes unnecessarily long and
the overall drift is reduced (unless of course the pulse is long
enough for many barriers to be crossed in a single pulse cy-
cle; since the standard deviation in trapping timeσ(τ) ∼ τ ,
as derived below, these “harmonics” cannot be seen). Based
on these observations, we can build a simple phenomenolog-
ical equation for the dependence of the drift velocity on the
pulse period:

vac(T ) ∼ Prob(τ < T/2)
L

T
. (7)

The first factor in eq 7 is the probability that the trapping time
in any given trap is less than half the period, which increases
with T . The second factor is inversely proportional toT and
embodies the waste of time due to unnecessarily long pulses.
Here we assume that the molecule may only escape from the
trap during theε1 part of the pulse and we disregard trapping
times longer thanT (associated, for example, with additional
delays ofT , 2T , 3T , etc. when the molecules fails to escape
repeatedly). In that sense this is a first order model.

To find the position of the resonance peak from eq 7, i.e.
the valueT0 for which the velocity is maximized, we must
calculateProb(τ < T/2), hence we need to know the prob-
ability density function of the trapping timeτ . From dc sim-
ulation data (not shown) we find that the distribution of trap-
ping times is generally well approximated by the normalized
distribution

ρ(τ) = 2 (τ/τ2
c ) e−(τ/τc)2

, (8)

whereτ2
c = 4 τ2/π. From ρ(τ) we calculateProb(τ <

T/2) = (1 − e−(T/2τc)2
) and maximizevac(T ) in eq 7 to



find the resonance conditionT 2
0 ≈ 5τ2

c , or

T0 ≈
√

20
π
τ ≈ 2.5 τ . (9)

From the distribution in eq 8 we can also calculateσ(τ) =√
(4/π − 1) τ ≈ τ/2; the distribution is thus quite broad.

Consequently, we expect the resonance peak to be quite broad
as well.

Finally, we can deduce the asymptotic behavior of the
velocity far from the resonance region, for very long or very
short periodsT . WhenT � τ , we expect the velocity of
the molecules to approach the mean of the velocities corre-
sponding to each field intensity, hence we write:

lim
(T/τ)→∞

µac =
µ(ε1, N) ε1 + µ(ε2, N) ε2

2εnet
. (10)

On the other hand, whenT � τ , we expect to recover the
mobility corresponding to the net global fieldεnet:

lim
(T/τ)→0

µac = µ(εnet, N) . (11)

Simulation results for the mobility of the molecules in
the ac regime are presented in Figure 5 (the mobility is just
proportional to the velocity here). Dashed lines indicate the
long and short period limits calculated above, while for each
molecular size an arrow points to the value ofT0 calculated
from τ (extracted from the dc data) according to eq 9. We
see that the predictions for the asymptotic limits and for the
position of the resonance peak are quite good. The separation
is best for very shortT , which corresponds to the dc case at
a field εnet which was chosen close to the optimum choice
for dc separation. There is no inversion in the order of the
bands, which makes sense since the driving field is always
applied in the same direction. It is also clear from the graph
that one cannot hope to single out a given molecular size by
tuning into its resonant frequency, as the peaks for different
molecular sizes are very broad.

The most interesting feature of the ac regime is that at
the resonance the overall drift speed increases significantly
(by as much as 30% forN = 50), while the separation of
the different bands decreases only slightly. Hence it appears
possible to increase the operating speed of this device while
keeping the separation capability intact by means of an ac
modulation of the dc driving field. We should note that we
have studied only one amplitude of the ac modulation; the
amplitude should also be examined as a variable to isolate
the optimal separation scenario. It is quite possible that at
optimal field intensity and ac amplitude one might actually
obtain a performance exceeding that of the dc regime. This
remains to be investigated further. Moreover, one might even
add spatial asymmetry in the channel structure to further op-
timize the separation.

Figure 5: Mobility of macromolecules in a symmetric chan-
nel in the ac modulation regime, as a function of the driving
field pulse period. The field oscillates betweenε1 = 0.007
andε2 = 0.003. The low and high-frequency limits, calcu-
lated from eq 10 and eq 11, are indicated by dashed lines on
the right and on the left side of the graph respectively. The
value ofT0 is indicated by an arrow for each molecular size.
Solid lines are added to guide the eye.
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