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ABSTRACT

A level-set model for the simulation of epitaxial growth
is described. In this model, the motion of island bound-
aries of discrete atomic layers is determined by the time
evolution of a continuous level-set function . The adatom
concentration is treated in a mean field manner. Thus,
fast events (such as diffusion or detachment of adatoms
from island boundaries) can be described without extra
computational cost. We discuss results for the scaled is-
land size distributions in the submonolayer aggregation
regime and compare them to those obtained from atom-
istic KMC simulations and experiments. The level-set
method can naturally be extended to describe multilayer
growth. Roughening and coarsening of the surface will
be discussed.
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1 INTRODUCTION

Epitaxial growth and many other phenomena of prac-
tical interest in materials sciences occur on time and
length scales that span many orders of magnitude. The
most basic physical processes that occur during epitaxial
growth occur on the atomic scale, i.e. on length scales of
the order of Angstroms, and time scales that reflect the
typical atomic vibration frequencies (i.e. 107'3 s). On
the other hand, a typical opto-electronic device might
be up to several microns in size, and its growth can take
minutes or even hours. Thus, the challenge in modeling
epitaxial growth is to span these vastly different time
and length scales.

The models that are typically used to describe epi-
taxial growth are either completely stochastic or com-
pletely deterministic. Mean field rate equations that
were introduced to this problem [1] almost 30 years ago
are a set of coupled ordinary differential equations. Con-
tinuum models based on partial differential equations
(PDE’s) are appropriate mainly at large time and length
scales [2],[3]. An alternative to completely analytic ap-
proaches are atomistic models that are typically imple-
mented in the form of molecular dynamics (MD) [4] or
kinetic Monte Carlo (KMC) [5] simulations.

We have introduced a new model to describe epitax-
ial growth [6],[7], the island dynamics model, that might
be considered a hybrid model between continuum, PDE-
based methods, and atomistic, stochastic methods. The
numerical solution of the model is based on the level-set
method [8], [9], which is a general technique for simu-
lating the motion of moving boundaries. This model
allows us to describe epitaxial growth as continuous in
the plane of the surface, yet it also allows us to dis-
cretely resolve each atomic layer [11]. Moreover, differ-
ent sources of fluctuations can be isolated and studied
individually [14].

2 THE MODEL

The main component of our model is that a (zero
thickness) boundary curve Ty, such as the boundary of
an island of height k£ + 1, can be represented by the
set ¢ = k, called the level-set, of a smooth function ¢,
called the level-set function. The boundaries of islands
of height k then correspond to the set of curves p = k—1.
A schematic representation of this idea is given in Fig. 1,
where two islands on a substrate are shown. Growth of
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Figure 1: A schematic representation of the level-set
formalism. Shown are island morphologies (left side),
and the level-set function ¢ (right side) that represents
this morphology.

these islands is described by a smooth evolution of the



function ¢ (cf. Figs. 1 (a) and (b)). The boundary
curve I'(t) generally has several disjoint pieces that may
evolve so as to merge (Fig. 1(c)) or split. Islands on
top of islands are also easily described, as illustrated in
Fig. 1 (d).

For a given boundary, the level-set function ¢ evolves
according to

g—f +v-Vp=0 , (1)

where v is the boundary velocity. The normal compo-
nent of the velocity v, = n-v contains all the physi-
cal information of the simulated system, where n is the
outward normal of the moving boundary and v - Vy =
vn|Ve|. The boundary velocity is computed by solving
the diffusion equation for the adatom concentration p
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where F' is the deposition flux, D is the surface diffusion
constant, and the last term on the right hand side is the
rate of nucleation of new islands on the surface. The
velocity of the island boundaries is determined by the
flux of adatoms to the island boundaries, and is given
by

v =a’D(n-Vp~ —n-Vph) + Dedge(k — kav) , (3)

The superscripts (+) and (—) label the contributions
from above and below the island boundary, and a is the
lattice constant. Degge relates to the edge diffusion rate,
and k and kK4, are the local and average curvature of the
island. We note that edge diffusion smoothes the island
edges. However, because of the mean-field treatment of
the adatom densities, islands are compact even without
edge diffusion [15]. Thus, we will include edge diffusion
only in the multilayer regime, where the smoothing of
island edges after merger is important (see below).

In order to solve the diffusion equation (2), a bound-
ary condition needs to be specified. For the case of ir-
reversible aggregation, in which all atoms are adsorbed
by the boundary, the standard continuum (absorbing)
boundary condtion is

p(x,t) =0 for all x with p(x,t) =0,1,2,... . (4)
We have shown that this boundary condition is valid
strictly only in the limit D/F — oco. However, a cor-
rection that accounts for the fact that one needs p =0
in a region around the island boundary that is (at least)
one lattice constant wide can easily be implemented. [10]

For the case of irreversible aggregation, a dimer (con-
sisting of two atoms) is the smallest stable island, and
the nucleation rate is

dNnyc
dt

= Dai(p?) (5)

where (-) denotes the spatial average of p(x,t)? and
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is the adatom capture number as derived by Bales and
Chrzan [12]. Please note that the nucleation density
Npye is slightly larger than the island density N, and
that the two only agree before coalescence. The param-
eter a reflects the island shape, and a ~ 1 for compact
islands. Expression (5) for the nucleation rate implies
that the time of a nucleation event is chosen determinis-
tically. Whenever N,,.L? passes the next integer value,
a new island is nucleated. Numerically, this is realized
by raising the level-set function to the next level at a
number of grid points chosen to represent a dimer. The
choice of the location however needs to be determined
by including a stochastic element. We found that the
probability for a new island to be seeded at location x
needs to weighted by the local value of p(x)?. Details
of the numerical implementation have been given else-
where [11].

(6)
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3 RESULTS

3.1 Submonolayer Growth for
Irreversible Aggregation

The scaled island size distribution as obtained from
our model in comparison to the one obtained from an
atomistic KMC simulation, and also in comparison to
experimental data for Fe/Fe(001) [13] is shown in Fig. 2.
The agreement of the data is excellent. This demon-
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Figure 2: Scaled islands size distribution for D/F = 108
obtained with the level set method (closed symbols), in
comparison to data obtained from a KMC simulation
(open circles and squares), and experimental data for
Fe/Fe(001) [13] (open triangles). The quantities ns, Sqq,
and 0 denote the density of islands of size s, average
island size, and surface coverage, respectively.



strates that our model that is based on coupled partial
differential equations does indeed capture all the essen-
tial physics, without resolving explicitly the motion of
each individual atom, as it is done in the atomistic sim-
ulation.

We have shown in Ref. [14] that the spatial fluctu-
ations in the seeding style are essential to obtain the
correct island size distribution. We have also tested the
effect of the island shape on the size distribution. The
size distribution for square or circular shaped islands is
essentially indistinguishable [15]. The reason is that the
distribution of the capture areas as discussed in Ref. [14]
determines the distribution of the island sizes.

3.2 Multilayer Growth for Irreversible
Aggregation

In ideal layer-by-layer growth, a layer is completed
before nucleation of a new layer starts. In this case,
growth on subsequent layers would essentially be identi-
cal to growth on previous layers. In reality, however, nu-
cleation on higher layers starts before the previous layer
has been completed and the surface starts to roughen.
This roughening transition depends on the growth con-
ditions (i.e., temperature and deposition flux), and the
material system (i.e., the value of the microscopic pa-
rameters). We have found that the surface roughness
also crucially depends on edge diffusion, as represented
by the parameter Deqge in eq. (3).

In particular, we find that the surface roughness in-
creases as the edge diffusion increases. This is illustrated
in Fig. 3. This behavior is somewhat surprising, since
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Figure 3: Surface roughness for different values of the

edge diffusion parameter.

one would initially expect that the overall effect of edge
diffusion is a smoothing of the surface. The explana-
tion for this effect is the following: Faster edge diffusion
leads to more compact island shapes, and as a result
the residence time of an atom on top of compact islands

is extended. This promotes nucleation at earlier times
on top of higher layers, and, thus, enhanced roughen-
ing [15].

3.3 Extension to Reversible
Aggregation

We have extended our model to include the effects
of adatom detachment from island boundaries. Details
of the model and its implementation are given in [16].
The main idea of this extension is that the velocity of
the island boundaries is modified, by adding a (negative)
shrink velocity vshrink. This quantity vshrink is a function
of a microscopic detachment rate Dget, and also includes
some information about the local environment of each
islands. More precise, we accout for the effect that the
effective escape rate from an isolated island is smaller
then the one for an island that has many other islands
in its proximity.

The important consequence of our approach is that
frequent atomistic events (such as detachment and sub-
sequent re-attachment of atoms from island boundaries)
are not resolved explicitly. Rather, they are treated in
a mean-field approach, without a need to change the
numerical timestep. Thus, fast events can properly be
included without an increase in computational time, as
is illustrated in Fig. 4. This is in contrast to atomistic
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Figure 4: Scaling of CPU time for different values of the
detachment rate.

methods (such as KMC), where every event is resolved
explicitly. We have shown in [16] that the results ob-
tained with this approach are essentially the same as
those obtained from the atomistic KMC model.

4 DISCUSSION AND CONCLUSION

We have described a basic model for homoepitaxy on
an isotropic substrate. Anisotropy in the substrate can
be readily included at the level of surface diffusion and



in the attachment rates, the latter through the velocity
function [7]. Moreover, the coupling to other external
continuous fields can also be carried out within this gen-
eral framework. At every time step, the velocity of all
island boundaries is calculated from the integration of
the diffusion equation. The solution of other global fields
might influence the velocity as well. For example, the
solution of an elastic field can be applied to modeling
the strain relaxation in heteroepitaxial systems.

The mean-field treatment of fast events, such as de-
tachment and re-attachment of atoms from island bound-
aries, allows us to properly accout for these processes
without explicitly resolving them. Thus, they can be
included without any extra computational costs. There-
fore, our model is ideally suited for other processes and
applications where the rates of the relevant events span a
large scale. This is in contrast to a typical atomistic sim-
ulation, where such a large span in the rates makes an
atomistic simulation compuationally extremely expen-
sive. Additionally, it is rather straightforward in our
model to accout for the presence of multiple diffusing
species. In the simplest case, the effect of the additional
species can be subsumed by solving a separate diffusion
equation.
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