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Abstract
Quantum resistor networks are interconnected thin wires
or  electron conducting wave guides. A multiple input-
output quantum network is  capable of  performing
massive parallel computing,similar to optical computing.
Basic logic functions and arithmetic computation have
been demonstrated to be possible on very simple
structures. The basic principles of utilizing such quantum
resistor networks are very important and are  presented
here.
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Introduction
In recent years ,the capability of fabricating ever smaller
man-made thin wire or conducting path continues to
advance. A thin wire with a thickness of  near atomic
dimension  could be within our reach in the near future.
Improved itching  and lithography techniques as well as
the use of atomic force microscopy can help us  to come to
this realization. Inside such a thin wire, electron
propagates like a wave at very low temperature, very
similar to microwave in a wave guide, since all inelastic
scatterings are not  significant. In that situation, an entire
new scheme of computing will emerge by using those
interconnected thin wires. This kind of quantum
computing is totally different from those spin-based
quantum computing, or spintronics, by others.  The use of
quantum resistor networks offers a much smaller space to
perform computing than the current microelectronics
based  processor. In addition, a large multiple input-output
network structure allows massive parallel and fault
tolerant computing., very similar to optical computing,
another branch of wave computing. In this paper, four
basic principles of  utilizing  such quantum resistor
network  ( QRN)[1-3]  are presented. Those principles are
summarized from the mesoscopic  physics principles that
have been developed  in the past two decades or so by
others.

Principle 1: Landauer-Buttiker Theory for
QRN.
Landauer-Buttiker formulation [4] of quantum
conductance provides the evaluation method  of electron
transport within  a QRN.  A QRN can be considered as a
net that  consists of many nodes and bonds that connect
two adjacent nodes. Inside a bond, the propagation of
electron wave is quasi one-dimensional  at Fermi energy at
zero temperature. It is then clear that  the transport of
electron wave from one location  to the other in a QRN is
described by Landauer-Buttiker  theory. It is in that sense
that an interconnected  wire network is a resistor network
even though a QRN is neither a passive nor an active
network . A QRN is simply  a massive  network that route
and re-route  many channels of electron wave from input
locations to output locations with desirable results. This is
analog to  a convergence lens that can route a huge
amount of light channels into a focused spot and hence can
perform a Fourier transform. Thus any logic function or
computation is directly determined by the transmission
probability between input and output of that network,
which is a subsystem of  a quantum parallel computing
machine.
A QRN is mounted between two reservoirs for computing
purpose. One of them is maintained at a higher voltage or
chemical potential than the other.  Coherent electrons are
injected  from the high voltage reservoir to the net.
Interference of waves occurs at every node point before
the arriving of electron at the low voltage reservoir with
intended results. Thus the computing principle is based on
the interference principle rather than on  the switching
principle of transistor  used by traditional
microelectronics. In a transistor, current is a scalar
quantity. Low current (or voltage) and high current (or
voltage)  of a circuit  determine “zero” and “one” in a
digital system. On the contrary,  an electron wave in a
QRN  is a two-dimensional vector with  well-defined
amplitude and  phase.  The results at outputs are then the
vector sum due to individual input. Therefore “zeros” and
“ones” in a QRN can be obtained by aligning those two-
dimensional vectors properly.



Transport of electron wave in a QRN can be conveniently
evaluated using  node-equation approach developed by the
author earlier [1]. At each node point,  a Kirchhoff  current
conservation law  must be satisfied. This results in
connecting wave function of a node point with all the
wave functions of  its  neighboring or connected nodes.
Thus for  each node point, there is an associated linear
node equation, very much like the Kirchhoff current law in
elementary circuit theory. A summary of  those rules is
given in the author’s recent paper [2].

Principle 2: Anderson Localization
Always Prevails.
Anderson localization always prevails in any QRN.
Electron wave for computing differs greatly from
microwave or optical wave in terms of how elastic and
inelastic scatterings  affect its propagation in a network.
Microwave can stay coherent over a large distance without
suffering significant scatterings. Optical wave is very
susceptible to Rayleigh and Brillouin scatterings.
However, electron wave is quite different in nature . When
an electron wave is used in the elastic scattering domain, it
is a  very highly reflective wave. Any node point in a
network is an elastic scattering center, where  an electron
wave always prefers to turn backward or turn around
through the next available exit nodes   than  to the
forward direction towards the low voltage reservoir.   This
means that even if we have  a “periodic network”, whether
it is constructed as a square lattice network ,a hexagonal
lattice network or any  other, mounted between two
reservoirs, electrons injected from the high voltage
reservoir will not arrive at the low voltage end  if the
distance is large. Most of the electron will either turn back
or circulate in loops inside the network. In another word,
there is absolutely no Bloch wave  for a periodic network
at all . At first glance, this fact seems to run against our
intuition from elementary solid state physics.  However,
this fact is nothing but another statement of Anderson
localization. In the original Anderson localization theory,
electrons are scattered among those elastic scattering
centers that are randomly  distributed in a disordered
materials. The backward scatterings resulted in
localization of electrons.   In a “gedanken” experiment , if
we were able to move the positions of  those randomly
distributed scattering centers  around a little so that they
are  all now  periodically placed, then of course the same
Anderson localization would still prevail. It is very
important to note that the existence of  Bloch wave  in a
periodic lattice  is true only in singly-connected space. A
QRN is a multiply-connected space. Therefore localization
of electrons in a periodic QRN  is to be expected rather
than be surprised.  A QRN is then indeed a man-made
structure to demonstrate  Anderson localization effect.

If Anderson localization prevails for any QRN, periodic or
aperiodic network, then  it is impossible  for electron wave
to propagate  from an input terminal to an output terminal
with large transmission probability. Consequently, any
QRN can be declared as a useless network under the
tyranny of Anderson localization effect. However this is
true only if  there is no external control mechanism. This
external mechanism can be provided by the next principle

Principle 3: Use Aharonov-Bohm effect.
Use Aharonov-Bohm effect as the tuning mechanism for
QRN. The original  Aharonov-Bohm (A-B) effect can be
understood  by the electron wave transport through a clean
metallic ring with two terminals.  One of the terminals is
connected to the high voltage reservoir, where electrons
are injected into the ring. Electron wave  will traverse  the
ring through both the upper and lower arms of the ring
before joining together at the output terminal. This is
similar to Mach-Zehnder effect in optics. Because of the
interference effect of electron waves from the upper and
lower arms, the transmission probability at the output
terminal will depend on the phase difference of the two
waves. In A-B effect, this phase difference can be tuned
by  an external  electric or magnetic fields.
 In the situation when  an external magnetic flux is used,
the transmission probability is a periodic function of the
applied flux. If the total number of atoms in the ring is an
even number, this period is single in the unit of elementary
flux, hc/e.   However, if the total number is an odd
number, then there is universal double periodicity [1]. This
implies that there exists two basic classes of two terminal
A-B rings. Furthermore,  in each class, there is a scaling
relation so that  the transmission behavior of two different
A-B rings can be identical from small atomic-size ring to a
mesoscopic one.
If a QRN is constructed, there will be many closed loops,
which are identical to having  rings with more than two
connected terminals. This suggests that a generalization of
A-B rings to more than just two terminals. Thus a  large
tunable QRN consists of many multi-terminal A-B rings
with an applied magnetic flux in each of the ring. This will
allow  QRN to be useful for  quantum computing.
A generalized A-B rings with three terminals [2] and four
terminals have been investigated [5] to demonstrate  the
powerful capability of electron wave computing.
As mentioned in principle 2 that  an electron wave is
highly reflective. In order to perform logic function or
computation, those reflected waves ( or back propagated
waves) may not be part of the computation. If this is the
case, then those unwanted wave must be removed from
further computation. This important dilemma faced in any
quantum wave computing , as was first raised by Landauer
[7], can be solved as  I address the next principle.



Principle 4: Use  Quantum  Circulator in
QRN.
Use quantum circulator to dump unwanted computation is
very important. We have investigated   electron  wave
transmission through three-terminal generalized  A-B
rings. There are four classes of such rings, each has its
own  scaling relation.  In one of the classes, there exists a
quantum circulator that is worth  special mentioning here.
If the three terminals are labeled as  A,B and C.  A
quantum circulator is such that an input from  terminal A
will be totally routed  to terminal B at particular applied
flux and hence there is no localization effect. Similarly,
input from B will be totally routed to C and C to A at the
same flux. Therefore if terminals A and B are connected in
between  any computational path , then the forward going
wave will be transmitted from terminal A to terminal B
while the reflected wave from terminal B will be dumped
into terminal C and hence will not interfere with  the
incoming wave.
As we have shown [2,3], three terminal A-B rings,
including quantum circulator, can provide a wide range of
logic functions in a single ring. Those include the logic
functions  of IF-THEN, AND,OR,XOR and INVERT.
Higher order functions, such as half adder or full adder
can be constructed from those simple logic gates.
In a large  NxN input-output network, a quantum
circulator will be needed at each appropriate location to
ensure that proper parallel processing computation can be
achieved.
The trimming of unwanted computations  by the use of
quantum circulators also implies that refreshing of  inputs
at certain stage of computation is required. This  is the
same requirement needed in the logic function of
INVERT. A supply line concept can be provided. For
example, in XOR-gate, one of the input can be considered
as the supply line, while the other input now becomes the
inpt that is to be inverted.   This makes QRN neither a
passive nor an active network. A QRN is simply a large
parallel processing  network of routing large inputs with
desirable results.
A  four terminal generalized A-B ring has also been
investigated recently [5]. There are three basic classes of
such rings, each with its own scaling relation. There is one
distinctive advantage of using four terminal A-B rings
over the three terminal ones.  With two-inputs-two-outputs
arrangement, a half adder can be constructed in a single
ring. What is even  more impressive is that when three-
inputs-one-output arrangement is used, a three-bit
computation for a full adder is now possible. The “carry”
part and “sum” part of a full adder can be constructed
from just two four terminal A-B rings. This replaces about
two dozen transistors needed in traditional
microelectronics circuit. This clearly demonstrated the
powerful advantage of QRN for computing.

Since generalized A-B rings, whether they are three
terminals or four terminals, are divide into different
classes and each class has its own distinctive transmission
characteristics, the question is how  to search  from
various classes of rings in order to find a suitable logic
gates. This  task can be made easy with the use next
principle.

Principle 4: Use Buttiker Symmetry Rule.
Buttiker symmetry rule [6] is need in order to   construct
all useful logic gates.  In logic applications there are
usually more than one input present. When there are two
coherent inputs, the transmission probability   at any
output terminal is the absolute value squared from the
vector sum of   two  outputs due to two individual inputs.
Classification of A-B rings  has  already  greatly
simplified  our search  of a particular  ring  for possible
applications,  because we know there are only limited
number of varieties in their transmission characteristics.
But Buttiker symmetry rule imposes  an additional
condition when one looks for  logic applications.  In the
symmetry rule, the transmission  probability at terminal  m
due to an input at terminal n at a particular applied
threaded flux value is the same as  the transmission
probability at terminal n due to an input at terminal m at
the negative value of that threaded flux.
Let us  try to find an XOR-gate  operation from  a three
terminal ring with terminals labeled as A,B and S. When
input at terminal A=1 and input at terminal B=0, the
transmission probability at output terminal S must be high.
Similarly when A=0. and B=1, the transmission
probability  at  terminal S must be also high at the same
threaded flux value. Those two conditions imply that if
there is an input placed at terminal S, this input must be
transmitted equally to both terminals A and B at  the
negative flux value, according to Buttiker symmetry rule.
Therefore the  maximum allowed transmission probability
at terminal S due to  input from terminal A or B is then
equal to 0.5 if  XOR-gate is what we are looking for. Then
one goes back to search for  a class of A-B rings with a
transmission probability that reaches the value around 0.5.
Of course, all simple logic gates are based on vector sum
of two outputs.  AND-gate is obtained by  aligning two
small vectors in the same direction to obtain an output that
is four times the intensity of  individual input. XOR-gate
is obtained by  aligning two output vectors that are equal
in value but are  opposite in directions. OR-gate is
obtained  by forming an equal-sided triangle between the
three output vectors.  The first two are the output vectors
due to  one input only . The third vector is from the output
due to both inputs.  It is worth noting that by rotating the
phase of one of the two inputs relative to the other, the
phase of  output vector can be rotated exactly to the same
value.



When three coherent inputs are considered, it is possible to
perform higher order computation, such as those in a full
adder using two simple four terminal rings. The output is
then a vector sum of three vectors.
Finally, it is very important to note  one of the criticisms
by Landauer on quantum computing that  “higher
transmission occurs at narrow input parameters” [7] . That
means if we try to impose too many conditions on a
simple network , the result will be that a  workable  range
of operation  is so narrow to  render the network
practically useless.  However his remarks on  how to
handle  reflections or unwanted computations is
overstated. As we have shown that junk computations
inside a network can be dumped with the use of  quantum
circulators.
In a large  QRN consists of many A-B rings, it would be
very  impractical  to apply different  flux to each ring.  For
a  large  QRN to be useful, it has to be designed  in such a
way that  the same flux value is applied to a large region
of the QRN. So the flux values applied  are limited to a
few varieties only.

Conclusion
In this article we  summarized some of the most important
mesoscopic physics principles that have been developed
by others  earlier and  described  them at a particular view
point that is suitable for understanding electron wave
computing.  Those principles serve as the guidelines that
allows one to see the huge potentials for electron wave
computing.  This type of quantum computing offers a
much better potential than those spin-based electronics
that have been reported by others. As we have shown in
other publications  that simple logic functions are readily
available in three terminal and four terminal A-B rings.
What is surprising is that higher order computing ,such as
a full adder or a  three-bit computation, is also available
through the use of simple four terminal generalized A-B
rings.
Electron wave computing is a two-dimensional vector
computing. Output vector  is  a linear combinations of  all
input vectors. The coefficients of  combining those  input
vectors depend on the structure   of  a QRN as well as  the
applied flux value, which is the control to avoid Anderson
localization. A general node equation method for
computing those coefficients has been developed by the
author. Because of the nature of this linear combination
,electron wave computing is a lot more versatile than
Fourier transform in optics or optical computing in
general.  With massive inputs, parallel and fault tolerant
computing is  now possible. In term of computing speed,
the propagation time through those ultra-small rings  is a
lot shorter than the switching speed of  any projected ultra-
small transistor for the future.

Experimentally, scientists are still limited to the
investigation of two terminal A-B rings. In a recent
experiment [8] ,  electron  can be shown to traverse a two
terminal clean A-B ring six times before  the amplitude is
damped. This clearly shows that a slight modification of
such ring to a three or four terminal one will allow one to
test  the logic functions  based on electron wave
computing principle.
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