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ABSTRACT

Examples are given to illustrate the use of computer
modeling to elucidate the structures of elastomeric polymer
networks, and to provide guidance on controlling these
structures to maximize mechanical properties. The first
example involves simulations of the gelation process leading
to the network structures necessary for rubberlike elasticity.
In other examples, Monte Carlo simulations of network
chains are used to characterize non-Gaussian effects, to
simulate the structures and properties of networks having
multimodal distributions of chain lengths, and to interpret
network thermoelasticity. Crystallization is simulated by
generating chains having representative sequence
distributions and then identifying matched-sequences that
could lead to the formation of crystallites. Finally, elastomer
reinforcement by fillers is being modeled by simulations of
chains in the vicinity of filler particles to determine the
importance of this excluded-volume effect.

Keywords: Elastomers, Elasticity, Mechanical Properties,
Crystallization, Reinforcement.

1 INTRODUCTION

The present review illustrates how computational
modeling has been used in the elucidation of the structures
and properties of elastomeric polymer networks, using
studies in which the author has been involved. One of the
main goals has been to provide guidance on how to optimize
the mechanical properties of an elastomer, by control of its
network structure and by the incorporation of reinforcing
fillers.

2 NETWORK FORMATION

The formation of network structures has been
extensively simulated by Eichinger and coworkers [1]. The
basic approach is to randomly end link functionally-
terminated precursor chains with a multifunctional reagent,
and then to examine the sol fraction with regard to amount
and types of molecules present, and the gel fraction with
regard to its structure and mechanical properties. This is
illustrated in Figure 1. The systems most studied in this
regard [1] involve chains of poly(dimethylsiloxane) (PDMS)
having end groups X that are either hydroxyl or vinyl
groups, with the corresponding Y groups on the end-linking
agents then being either OR alkoxy groups in an
organosilicate, or H atoms in a multifunctional silane [2].
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Figure 1: End-linking reactions to form elastomeric network
structures. The upper portion of the figure shows the

reactants, and the lower portion shows some types of
expected products.

The Monte Carlo method for simulating these reactions
is now part of the Polymer Module in some commercial
software (Molecular Simulations, Inc.), and is being used in
the present investigations to generate additional information
on the vinyl-silane end linking of PDMS [3]. The
simulations were found to give a very good account of
extents of reaction at the gelation points, but to overestimate
the maximum extent of reaction attainable. The discrepancy
may be due to experimental difficulties in taking the end-
linking reaction close to completion within a highly viscous,
entangled medium.

If cyclic molecules of PDMS are present during the end
linking, then they are trapped within the results network if
they are large enough to be penetrated by the precursor
chains [2]. This "incarceration" process has also been
successfully simulated [4].
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3 DISTRIBUTIONS OF THE END-TO-END
DISTANCES

One novel approach to obtaining non-Gaussian
distribution functions utilizes the wealth of information that
rotational isomeric theory provides on the spatial
configurations of chain molecules [5]. Specifically, Monte
Carlo calculations based on the rotational isomeric state
approximation are used to simulate spatial configurations
and thus distribution functions for the end-to-end separations
[6-8]. The results obtained documented the expected fact that
the Gaussian distribution is generally a very poor
approximation for short chains, or for the high extensions
that are of critical importance with regard to ultimate
properties.

These Monte Carlo distributions can be used in the
standard three-chain model for rubberlike elasticity to
generate, for example, stress-strain isotherms [2]. Non-
Gaussian effects can cause large increases in modulus at
high elongations, because of the limited extensibilities of the
network chains [9]. Thus, it is very useful to identify chain
structures and chain lengths giving the largest increases in
stress without unacceptable decreases in extensibility. This
will, of course, maximize the area under the stress-strain
curve, which represents the energy for rupture or toughness
of the material. One illustration of this approach is the use
of multimodal distributions of network chain lengths, as
described in the following Section.

4 ELASTOMERS HAVING MULTIMODAL
DISTRIBUTIONS OF THE END-TO-END
DISTANCE

One of the most interesting applications of this
approach is to PDMS elastomers which have a bimodal
distribution of network chain lengths [10, 11] and,
correspondingly, very good mechanical properties [2]. The
upturns in modulus observed at high elongations are thought
to be due to the very limited extensibilities of the short
chains in the bimodal structures, with the long chains
increasing extensibility, and this seems to be supported by
the simulated results [8, 12].

Because of the improvements in properties exhibited
by elastomers having bimodal distributions [2], there have
been attempts to prepare and characterize "trimodal"
networks [13-15]. The calculations suggest that adding a
small amount of very high molecular weight polymer could
further improve mechancal properties.

S THERMOELASTICITY

Monte Carlo simulations can also be used to interpret
thermoelastic (force-temperature) results generally
conducted to estimate the energetic contribution fe to the
elastic force f [9]. This can be done through the relationship
fe/f = dln<r2>o/dT, by carrying out calculations of the

unperturbed end-to-end dimensions <r2>o as a function of
temperature. An example is the calculation of fe/f for the
protein elastin [16, 17], which showed that the usual
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random-network model is sufficient to explain its
thermoelastic behavior, without the need to postulate more
complicated structures.

6 CRYSTALLIZATION

There is now considerable interest in using simulations
for characterizing crystallization in copolymeric materials. In
particular, Windle and coworkers [18] have developed
models capable of simulating chain ordering in copolymers
composed of two comonomers, at least one of which is
crystallizable. Typically, the chains are placed in parallel,
two-dimensional arrangements. Neighboring chains are then
searched for like-sequence matches that could lead to the
formation of crystallites, in order to estimate extents of
crystallinity. Chains stacked in arbitrary registrations are
taken to model quenched samples. Annealed samples, on the
other hand, are modeled by sliding the chains past one
another longitudinally to search for the largest possible
number of matches. The longitudinal movement of the
chains relative to one another, out of register, approximately
models the lateral searching of sequences in copolymeric
chains during annealing [19-22].

One example [19, 20] of such a study involved
modeling random and semi-blocky poly(diphenylsiloxane-
co-dimethylsiloxane) copolymers. In this example, the
chains were placed alongside one another in a two-
dimensional array, with black squares representing
dimethylsiloxane (DMS) units and white squares
representing diphenylsiloxane (DPS) units [19, 20]. "Like"
squares neighboring each other in the same row are then
viewed as coalescing into blocks the lengths of which are
under scrutiny. It is thus possible to identify crystallizable
DPS regions as distinct from non-crystallizable DMS
sequences, or units of the crystallizable DPS component that
were not long enough to participate in the crystallization [19,
20]. A value of the degree of crystallinity of a simulated
sample can then be determined by counting the units
involved in the crystalline sequences with respect to the total
number of units of all the chains. The crystallites thus
identified presumably act as cross-linking sites and
reinforcing domains, thereby providing the additional
toughness the semi-blocky copolymers are known to have
over their random counterparts. These methods have also
been used in simulations on a stereochemically-variable
polysiloxane, specifically poly(methyl-3,3,3-trifluoropropyl-
siloxane) [22].

A similar approach was used for polypropylene (PP), a
stereochemically variable hydrocarbon polymer. It is of
particular interest since it can be prepared in the form of a
thermoplastic elastomer in which there are alternating runs
of blocks of isotactic and atactic sequences [23]. The trick
(which has been accomplished by some catalysts) is to make
the isotactic runs long enough to give crystallites with
enough stability to act as cross links, without making their
sizes and numbers so large that the material is highly
crystalline rather than elastomeric. Some typical chain
generations and matchings are shown in Figure 2 [24]. Of
greatest interest is the case where the isotactic lengths are
kept at a constant relatively large value while the random
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Figure 2: Results of some simulations on PP chains that were
90 % isotactic. In the upper portion of the figure, the black
squares represent the d isomers and the white squares the /

isomers. In the lower portion, the number of neighboring like
squares coalescing into crystallites of isotactic polymer are

shown by the white blocks.

(atactic) sequences are increased in length, thereby
decreasing the overall content of meso placements
(replications of d's or replication of 's). The simulations are
consistent with the presence of crystallinity at overall
levels of PP isotacticity sufficiently low to give only
completely amorphous polymers had the structures not been
blocky.

7 FILLER REINFORCEMENT

Monte Carlo computer simulations have been carried
out on filled networks [25-28] in an attempt to obtain a better
molecular interpretation of how such dispersed fillers
reinforce elastomeric materials. The approach taken enables
estimation of the effect of the excluded volume of the filler
particles and the non-Gaussian characteristics of the chains
on the elastic properties of the filled networks. Distribution
functions for the end-to-end vectors of the chains were
obtained using a Monte-Carlo rotational isomeric state
technique [6]. Conformations of chains
which overlapped with any filler particle during the
simulation were rejected.

In an illustrative study, the reinforcing particles were
randomly distributed within a PDMS elastomeric matrix

[28]. One effect of the filler was to increase the extensions of
the chains, at least in the case of relatively small filler
particles. This is in agreement with some subsequent neutron
scattering experiments on silicate-filled PDMS [29]. The
substantial increases in stress and modulus with increase in
filler content and elongation are in at least qualitative
agreement with experiment.

Simulations have also been carried out to model
networks reinforced with polystyrene (PS) particles [30].
These initially spherical particles were deformed into prolate
(cigar-shaped) ellipsoids by first generating particles within
an elastomer, heating the elastomer above the glass transition
temperature of the PS, stretching it, and then cooling the
material under the deformation [31]. The model employed is
shown in Figure 3. The distributions simulated for this
anisotropic system were then used to calcuate values of the
elastic modulus. The simulated results are in qualitative
agreement with the experimental differences in longitudinal
and transverse moduli [31]. Quantitative comparisons are
difficult because of the non-uniform stress fields around the
particles after the deforming matrix is allowed to retract,
and also because the present simulations apply to the
particles on an ideal cubic matrix. In any case, the results
should encourage additional work in this important area of
filler reinforcement [32-34].

Specifically, there are a number of directions in which
such filler simulations could be extended. For example, one
could investigate different particle-size distributions, various
distributions of the particles in space, and the effects of
particle aggregation. In the case of particles that are non-
spherical (including disc-shaped oblate ellipsoids), it would
be important to study both particles in regular (parallel)
orientations [30] and those that are randomly oriented. It
would also be interesting to model physical adsorption of
chains onto the filler surfaces, using standard Lennard-Jones
interaction potentials. Chemical adsorption, on the other
hand, could be modeled by randomly distributing active
particle sites, and then interacting chains with them through
a Dirac d-function type of potential (with chains at less than
some short-range interaction distance becoming chemi-

Figure 3: A three-dimensional cubic lattice of filler particles
as they would originally appear as spheres, and then as
deformed into aligned prolate ellipsoids. The aspect ratios of
the ellipsoids were varied by changes in the extent of the
deformation applied uniaxially in the direction shown by the
arrows. Also shown is a polymer chain which was randomly
generated among the ellipsoidal filler particles to determine
the particle-induced changes in its spatial configurations, and
thus its end-to-end distribution [30].
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sorbed). Of particular interest would be simulations for
chains sufficiently long to partially adsorb onto several filler
particles, and to model chain-contour distributions between
the bulk polymer and the filler particles.
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