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ABSTRACT

It has been recently reported that the electrical charge in
a semiconductive carbon nanotube is not evenly distributed,
but is divided into charge “islands [1,2].” A clear
understanding of tunneling phenomena can be useful to
elucidate the mechanism for electrical conduction in
nanotubes. This paper represents the first attempt to shed
light on the aforementioned phenomenon through viewing
tunneling as a natural consequence of  “discrete
trajectories.” The relevance of this analysis is that it may
provide further insight into the higher rate of tunneling
processes, which makes tunneling devices attractive [3]. In
a situation involving particles impinging on a classically
impenetrable barrier, the result of quantum mechanics that
the probability of detecting transmitted particles falls off
exponentially is derived without wave theory. This paper
should provide a basis for calculating the charge profile
over the length of the tube so that nanoscale devices’
conductive properties may be fully exnloited.
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1 INTRODUCTION

This introduction serves as an outline for the paper. The
idea of the “warp tunnel” is essential for subsequent
calculations in this paper. Though it sounds futuristic, the
idea is straightforward and sound. The warp tunnel is
introduced in Figure 1. Its quantitative properties are
explored in Figure 2, which attempts to provide insight into
the higher rate of tunneling processes. Figure 3 hints at the
explanation of the charge island phenomenon, and also
provides a basis for understanding subsequent calculations.
To show the potency of this analytical model, we calculate
the ftransmission probability of a beam of electrons
impinging on a classically impenetrable barrier, the
scenario shown in Figure 4. Having successfully obtained
the result, we look within the analysis to obtain the
explanation for charge islands.

2 BACKGROUND AND MOTIVATION

We begin with consideration of Figure 4. Electrons
emitted from a source S impinge on a potential barrier. To
penetrate the barrier, they must tunnel a distance a while
bridging the distance r. We wish to find p(L), or the
probability of bridging the distance r while traveling only
L =r—a. In Figure 5, we visualize distance r as consisting
of warp tunnels of differing constituents. Uncharged
particles are shown as white while electrons are black.

Although the number of electrons in each warp tunnel
increases from top to bottom in this figure, such an
arrangement is solely for conceptual simplicity. The
number of electrons pictured in each warp tunnel
symbolizes the number of electrons involved in the
momentum transfer to the outgoing electron in each warp
tunnel. It is assumed that the greater the involvement of
uncharged particles in the momentum transfer, the faster the
transfer will occur, owing to the greater size of the
uncharged particles.

Figure 6 shows that the uncharged particles move but
little in a chain reaction or momentum transfer, but the
electrons, being smaller, must move more to propagate the
chain reaction. When particle A, in Figure 6, is inserted
into the warp tunnel in (I), its representative exits almost
immediately. The effective distance traveled by A is on the
order of its diameter. However, when A is inserted into
warp tunnel (II), its effective distance traveled is greater.

2.1 Model Verification Calculation

To formalize the calculation, it is assumed that the mean
free path of an electron is d, while that of an uncharged
particle is 0. In warp tunnel (a) of Figure 5, it is presumed
that an incoming electron will travel d once it enters the

_tunnel, collide with an uncharged particle, which will then

transfer that momentum via other uncharged particles to an
outgoing electron, which will exit the warp tunnel almost
immediately after the first electron entered it. As depicted
in Figure 3, such a scenario becomes increasingly
improbable as the length of the warp tunnel increases. In
warp tunnel (b) of Figure 5, since the mean free path of
uncharged particles is 0 and the current flows to the left, we
may assume that the electron inside the tunnel is flushed to
the right of its adjacent uncharged particle on its left. That
electron then having a mean free path of d has to its
immediate right a distance d of intervening space separating
it from the next uncharged particle in the tunnel. So the
incoming electron travels a distance d once it enters the
tube, transfers its momentum to the uncharged particles,
which cause the middle electron to travel through a distance
d, which was to its right. It collides with uncharged
particles, which cause an electron to be ejected from the
warp tunnel. The amount of time it takes to eject an
electron after one has entered in warp tunnel (b) is about
twice that in warp tunnel (a). A convenient abstraction is to
regard an electron entering a tunnel as appearing for a few
instants, disappearing, and reappearing at a point further
downstream the tunnel. The more “appearances” an
electron makes in a tunnel, the longer its trip through the
tunnel. Here enters the notion of a “discrete trajectory.”
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The electron does not travel continuously through the tube,
but successively appears at subsequent points in the tube
and disappears between those points.

In Figure 5, i - 1 electron mean free path domains are
evenly distributed throughout the warp tunnel. This
assumption is true on average. For a warp tunnel with
L =i d, we calculate p(L) as follows. To choose i - 1
domains out of the interval [-r,0] as free path positions for
the i - 1 electrons, we recognize that the number of points
from which to choose is n = r/d. The number of ways of
obtaining a warp tunnel with L=id,isn(n-1) (n - 2)
«..(n=(@{-2))=nl/(n-(i-1))! We use Stirling’s Formula
to simplify.

pL) = V@-3G-1)!
L=id=i=L/Md,n-i=(r-Lyd.

p(L) < e - i+2)+@-i+¥)Lo(-i+2)]

p(L) < G’ L.

The probability of detecting electrons on the other side of
the barrier requires L =r — a, and is given by:

pL) xe [@d+(@d+ %) Ln@d +2)]
If a/d >> 1, p(L) —> 0 very quickly, but if a/d ~ 1,

pL)=Ge*?

which falls off exponentially with increasing barrier width
a. G and the k are independent or r.

3 MODEL EXPLOITATION

The calculation of the charge separation is lengthy and
involved. Consequently, only genera! remarks, an outline
of the calculation and reporting of those resuits appear here.
The idea behind charge islands is closely associated with
that of mean free path. A free-floating electron travels by a
certain average amount before it collides with another
particle, possibly dislodging an electron and imparting it
with its motion. The electron need not directly bump into
another electron though. It may transfer its motion by
bumping into several intervening neutral particles.
Tunneling viewed in this light is to induce the motion of a
distinct, yet otherwise indistinguishable, particle indirectly
via intervening, and possibly different, particles—much in
the same way as making a combination shot in pool.
Charge islands are formed at regular intervals due to the
chain-reaction creation of charged particles a certain mean
distance from an immediately upstream impulse due to the
indirect motion of charged particles there. We may think of
a length L nanotube as a warp tunnel containing i electron
islands. These islands will be evenly spaced on average. In
a nanoscale metallic conductor, the spacing of the charge

islands is so close that the charge appears to be uniformly
distributed. However, in a nanoscale semiconductor, the
spacing of charge islands increases, revealing charge
granularity.

3.1 Spacing Calculation Outline

Since charge is segregated into islands, to model this
circuit, an appropriate technique seems to be that of the
series RC circuit. A capacitor plate represents a charge
island; the spacing between the plates of the capacitor
represents the neutral gaps between adjacent charge islands.
The capacitors are modeled as having equal capacitance
while R represents the internal resistance of the circuit.
Ordinarily, we would not expect a capacitor to conduct a
DC current, but if the plate spacing is sufficiently close a
tunneling current will flow in the same way that electrons
will pass through the barrier shown in Figure 4 if a is small
enough. When tunneling is viewed in this new light, a
tunneling current can readily transmit through 40 nm
barriers.

Consider the warp tunnel in the top of Figure 1.
Ignoring its coloring, let the particle entering the tunnel be a
photon emitted by an electron, not displayed, to its left.
Assume that the warp tunnel spans a barrier of width a.
The particle emerging from the right side of the warp tunnel
may be a photon that will be absorbed by an electron, not
displayed, on the right side of the barrier. The outgoing
photon thereby imparts that electron with the motion
originally possessed by the other electron on the left side of
the barrier. In these calculations, it is assumed that the
photon has a width, denoted It, directly proportional to its
energy or frequency. The proportionality constant is
derived from physical constants.

Assuming the warp tunnel in Figure 1 is full, the
entering photon need only move into the tunnel an amount
It when a representative photon will move out of the tunnel.
The electron, which originally emitted the photon, has
effectively bridged the distance across the barrier by
“traveling” only a distance It << a. The effective length of
the barrier is only It(f), or the width of the photon of
frequency f perpetuating the motion. This analysis explains
both the optical and quantum mechanical barrier
penetration phenomena shown in Figure 7. In general, it is
not the selfsame electron that impinges on the barrier in
Figure 7.a that emerges on the other side. Likewise, it is
not the selfsame photon that enters the prism on the left that
is detected beyond the prism on the right.

This model allows one to conclude that the effective
Iength of the barrier may be given by the width, 1t(f), of a
photon within the barrier. To find the probability
distribution function, f(L), of the length of the barrier, we
use the Planck distribution function, which gives the
thermal average number of photons in a single mode of
frequency. For the temperature variable, we use room
temperature. The majority of the frequencies are smaller
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than that of visible light; hence, f(L) «< 1/L, where L is a
function of frequency.

We return now to our classical RC circuit model. When
the power is turned on in a classical DC RC circuit, we
obtain a transient solution: a current that exponentially
decays in time. However, if the capacitor plate spacing is
not fixed, but is exponentially decreasing with increasing
time, we find that the current through the capacitor is
essentially constant and inversely exponentially depends on
the original plate spacing. The probability distribution
function, g(L), of the length L between the capacitor plates,
or the plate spacing, must give g(L) « 1/L to explain a plate
spacing that exponentially decays with time.  This
remarkable and highly convincing result shows that
harmony may be obtained between standard tunneling
current formulae and that predicted by DC RC circuit
analysis by assuming that the tunneled current follows a
discrete trajectory across the barrier.

Detailed calculations were performed to obtain the
coefficient of time in the decreasing exponential factor
involved in the plate spacing of the capacitor. This value,
along with the internal resistance of the circuit, is needed to
resolve the formula for the tunneling current through the
nanotube circuit or the tunneling resistance of the nanotube.

This model reasonably predicts the charge separation
contingent on one measurement, which was not reported in
the literature discussing this phenomenon: the internal
resistance of the circuit when the semiconducting nanotube
is short-circuited by a metallic nanotube or another
extremely low resistance shunt. So, if the power supply
were shut off, and the two nanotube terminals, gold in one
test and platinum in another, were short-circuited by an
extremely low resistance shunt and a highly sensitive
ohmmeter were placed in series, one lead at the positive
terminal of the power supply and one at the negative
terminal of the power supply, the resistance, R, that the
ohmmeter would read for the two scenarios reported in
[2]—keeping all things constant such as temperature, the
length of the tubes, the length and composition of the leads
to the tubes, and identical final charge spacing—is needed.

An equivalence is established which allows calculation
of the charge separation based on traditional circuit
parameters yielded readily from macroscopic measurements
and the literature. We equate the tunneling resistance of the
entire nanotube with no islands at t = 0 when the power
supply is switched on to that which would result from an
arbitrary number n of charge islands which are manifested
att> 0. Solving for n yields the number of charge islands,
which the model says should be evenly spaced. Knowledge
of the length of the nanotube gives the separation of the
charge islands. The charge separation for various R has
been calculated and is presented below:

4 RESULTS

Results are given in the form: (R in Ohms, charge
island spacing in nm). For the 650 nm tube, (0.0326, 37.7),
(0.0338, 42.6), and (0.0332, 40). For the 750 nm tube,
(0.0352, 34.4), (0.0362, 37.82), and (0.0357, 36). These
resistances seem in range. The resistance of a copper wire
of square cross section 0.1 mm on a side and 2 cm in length
is 0.0344 ohms.

S REMARKS

A general observation about tunneling is that as the
mass or equivalent energy of a tunneled particle decreases,
the greater its transmission probability. When we apply this
analysis to the optical experiment in Figure 7, we see that d
is on the order of the wavelength of the incident light.
Observe that lower frequency electromagnetic radiation has
greater penetrating ability, which also may be related to the
size of its photons. As a final comment, a standing wave
may be thought of as existing inside the potential barrier in
Figure 4. Analogously, this “island,” phenomenon may
also exist on a macroscopic scale and may be manifested
with light in microwave ovens, which often do not heat
food uniformly, but leave hot and cold spots in food.

6 CONCLUSIONS

A theoretical framework was introduced to better
understand tunneling. It was successfully applied to
determine the transmission probability of a stream of
electrons incident on a potential barrier. An appeal was
made to the established model to help explain the reported
phenomenon of charge separation in carbon nanotubes.

Calculations have been performed which show that
while to calculate the capacitance above the nanoscale, the
plate spacing d(t) of a capacitor should be a fixed constant,
independent of time, at the nanoscale, d(t) rapidly decreases
as a function of time in accordance with the probability
distribution function—predicted by this theory—of the
lengths of the discrete trajectories of electrons bridging the
gap of the capacitor. When this calculation is performed,
an equation—identical in form to that of Giaever—yielding
the current through the circuit as an inverse exponential
function of the original plate spacing of the capacitor is
obtained. This equation is then used to obtain the spacing
of the charge islands. The fact that the classical equations
for a series RC circuit can still be utilized on the nanoscale
by assuming the plate spacing of the capacitor is shrinking
by a function of time which is predicted by this theory is
strong proof alone that this theory is sound.

General remarks about tunneling with Ilight and
electrons were made with the implication that the
phenomenon of tunneling is more ubiquitous than perhaps
generally thought. The theoretical model seems accurate
and was inspired by a more general computer program
written by the author.
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The elapsed time to push a particle into the warp tunnel
is the amount of time it takes for “it” to completely
emerge at the other end, independent of the length

of the tunnel.

Cutaway View of Warp Tunnel
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The particle emerging as a consequence of tunnel
overflow is not the selfsame particle inserted, but

to the extent that subatomic particles are indistinguishable,
it represents the particle inserted.

Figure 1: The warp tunnel.
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F=M (/D) g’, where g’ is the acceleration due to F.
d=g’ t%2,t=(2 d/g’)*5
vp=(+d)t=(+d)(F(2dM/D)))°s
Instead of F acting on a particle, assume it has a corresponding
initial input v, , then “it” will effectively traverse tunnel with vi.
mv2 =Fd, v;=(2F d/m)°s
vi¥; =@ +d)/(2dM @D)) °S /(2 d))°S
= (r + d) (m D)%5/(2 d)/(M r)**
= 0.5 (//d) (m/M)°5 (D/r)05, if r>>d. v < v,

Figure 2: Higher rate of tunneling processes.
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White particles are uncharged while black ones are charged.
Separations near charged particles are of a distance quantum,
which may exceed the particle diameter.

For warp tunnels of a certain equal length, the probability of each
of the three pictured scenarios decreases from top to bottom.
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Figure 3: Warp scenarios.
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Figure 4: Stream on potential barrier.
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Figure 5: Warp tunnel constituents.
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Figure 6: Size influences warp effect.
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Figure 7: Optical and quantum mechanical tunneling.
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