Detecting Secondary Peptide Structures by Scaling a Genetic Algorithm

S. Michaud*, J. Zydallis*, G. Lamont* and R. Pachter**

* Dept of Electrical and Computer Engineering
Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA
Steven.Michaud, Jesse.Zydallis, Gary. Lamont@afit.af.mil
** Materials and Manufacturing Directorate, Air Force Research Laboratory,
Wright-Patterson AFB, OH 45433, USA
Ruth.Pachter@wpafb.af.mil

ABSTRACT

The ability to accurately predict a polypeptide’s molec-
ular structure given its amino acid sequence is important
to numerous scientific, medical, and engineering appli-
cations. Studies have been conducted in the application
of Genetic Algorithms (GAs) to this problem with ini-
tial results shown to be promising. In this paper we use
the fast messy Genetic Algorithm (fmGA) to attempt to
find the minimization of an empirical CHARMM energy
model and generation of the associated conformation.
Previous work has shown that the fmGA provided favor-
able results, at least when applied to the pentapeptide
[Met]-Enkephelin. We extend these results to a much
larger Polyalanine peptide by utilizing secondary struc-
ture information. This information is utilized to conduct
localized searches on the energy landscape. Results in-
dicate that on average this localized search always pro-
duces a better final solution.

Keywords: Alanine Peptide, Energy Minimization,
Protein Structure Prediction Problem, Genetic Algo-
rithm, Fast Messy Genetic Algorithm.

1 INTRODUCTION

Many scientists and engineers are working hard to
solve the Protein Structure Prediction Problem (PSP)
[1]. The problem of developing a generalized technique
for predicting a polypeptide’s molecular structure given
its amino acid sequence is commonly referred to as the
PSP problem. This problem requires the minimization
of an energy function in conformational space [2]. In
this paper we present a stochastic, population based
search approach to .solving the protein structure predic-
tion problem, the fast messy genetic algorithm (fmGA).

The fmGA was developed in 1991 by Goldberg, Deb
and Kargupta [3] and later applied to the PSP prob-
lem by Merkle, Gates, Lamont and Pachter [4]. The
fmGA is a Genetic Algorithm (GA) that takes advan-
tage of building blocks to solve optimization problems.
Previous work has shown the fmGA to be an effective
and efficient method in solving the PSP problem us-
ing the CHARMM energy model and the pentapeptide
[Met]-Enkephelin [5], [6]. This fact has led us to believe
that favorable results will be obtained when applying

the fmGA to larger proteins. This paper focuses on
solving a much larger Polyalanine peptide model. The
Polyalanine peptide we used consists of 14 residues and
56 independent variables as compared to the 5 residues
and 24 independent variables of [Met]-Enkephelin [5].
Each of the dihedral angles is represented by a binary
string of 10 bits yielding a landscape size of 561924 com-
pared with the 24102 of [Met]-Enkephelin. In order to
effectively scale the fmGA search algorithm to handle
larger proteins and continue to obtain “good” solutions,
additional domain information is used in the form of
secondary structure information.

In Section 2 we present background information on
the fast messy genetic algorithm as applied to the PSP
problem. Sections 3 and 4 present the secondary struc-
ture analysis, testing and results. Section 5 finishes with
our conclusions and comments on future work.

2 DESCRIPTION OF THE FAST
MESSY GENETIC SEARCH
ALGORITHM

The fmGA is an approach that explicitly exploits
“sood” Building Blocks (BBs) in solving optimization
problems. These BBs represent “good” information in
the form of partial strings that can be utilized to ob-
tain even better solutions. The BB approach is used in
the fmGA to increase the number of “good” building
blocks that are present in each subsequent generation of
the algorithm. The fmGA algorithm executes in three
phases, the Initialization Phase, the Building Block Fil-
tering Phase, and the Juztapostitional Phase [4]. Each
of these phases is now described in more detail.

The algorithm begins with the Probabilistically Com-
plete Initialization Phase. This phase randomly gener-
ates a number of population members. These popula-
tion members are of a specified length and are evalu-
ated to determine each member’s corresponding fitness
value. Our implementation utilizes a binary scheme in
which each bit is represented with either a 1 or a 0 and
the CHARMM energy model is used to calculate each
string’s fitness value.

The Building Block Filtering (BBF) Phase follows
and randomly deletes allele values in each of the popula-
tion member’s strings until the strings reach a predeter-

Computational Nanoscience 2001, (www.cr.org), ISBN 0-9708275-3-9. 29

mined BB size. This process is alternated with a selec-
tion mechanism to keep only the strings with the “best”
building blocks found. An input schedule is used to
specify the number of generations to execute each phase
and the generations upon which BBF and selection will
occur. Through the BBF phase the string lengths de-
crease but must continue to be evaluated for selection.
These strings are referred to as “underspecified” since
each locus does not have an associated allele value. In
order to evaluate “underspecified” strings, a competitive
template is used [3]. This template contains the allele
values of the best found string in the population from
the previous block size phase. To evaluate an underspec-
ified population member, the member is overlayed upon
the template to fully specify the member. This process
essentially takes the missing allele values from the tem-
plate and places them into the population member to
allow the fitness evaluation to take place. This overlay
function process is repeated any time an underspecified
population member needs to be evaluated.

The juxtapositional phase then takes the building
blocks found through BBF and uses recombination op-
erators to create strings that are fully specified. The re-
combination operation may result in overspecified strings
which are strings containing multiple allele values for
the same locus position. In this case a left to right
method is used. This method takes the first allele value
encountered for any locus and uses that value even if
subsequent values for the same locus appear later in
the string. Recombination is alternated with a binary
thresholding tournament selection operator to keep the
best solutions found. Upon completing of the juxtaposi-
tional phase, the best population member becomes the
new competitive template. The algorithm restarts with
a new BB size and repeats the three phases. If there
are no more BB sizes to execute, the best population
member is presented as the solution.

3 SECONDARY STRUCTURE
ANALYSIS

The ability to predict a protein’s three-dimensional
structure or conformation from its one-dimensional amino-
acid sequence is a significant problem. The prediction
of the secondary structure is an important step towards
predicting the three-dimension structure of the protein
[7]. This secondary structure may consist of helices,
beta-strands, turns, etc. The prediction of the sec-
ondary structure has been used as a precurser to find-
ing a “good” tertiary structure [7], [8]. We present a
modification to our fmGA algorithm that incorporates
localized secondary structure searches.

We are dealing with the Polyalanine peptide which
consists of only an a-helix secondary structure. Since
the focus of this paper is to show the effectiveness of the
fmGA on larger peptides, our modifications to the fmGA

are restricted to an a-helix secondary structure but can
be expanded to any secondary structure in the future.
Upon completion of the three phases of the fmGA, each
population member’s backbone dihedral angles are an-
alyzed. This analysis records the total number of each
specific dihedral angle that falls within the user spec-
ified dihedral angular constraints. This constraint is a
+/- percentage of the known secondary structure’s angle
values. For example, if the angular constraint is +/-10%
and the w dihedral angle of the secondary structure has a
value of 100°, any w angle between 90° and 110° is added
to the total number of angles meeting the constraint. If
the algorithm is successful in partially predicting the
secondary structure of the protein, a localized search on
the competitive template is conducted to try and find
the “optimal” conformation. The competitive template
is now modified since it contains the current best so-
lution found and directly affects subsequent population
members and the final solution obtained.

The algorithm’s success at predicting the secondary
structure is measured by determining if a user specified
percentage of the total number of residue angles in the
population is met. This is done by analyzing the total
number of angles that are within a percentage of the val-
ues in the known secondary structure. In our preceding
example, if the percentage constraint is 10% and 15 of
a total of 100 population members, 15%, had an angle
between 90° and 110°, then we state that the algorithm
was successful at predicting the respective secondary
structure angle and subsequently a localized search is
conducted based on that determination. On the other
hand if at least 10% of the angles did not meet the an-
gular constraint, a localized search operation is not con-
ducted, since the tested secondary structure does not
appear to exist in this protein. In all tests conducted
the percentage constraint and angular constraint were
set to the same value.

The Secondary Structure Analysis (SSA) supports
the localized search operation. A left to right sweep
of the competitive template is completed. This Sweep
Operator (SO) compares the value of each angle in the
template to the corresponding angle of the known sec-
ondary structure. If the value is different, the template’s
angle is changed to reflect the secondary structure. The
template is then evaluated to determine if this change
has resulted in an improved fitness value. If the fitness
value is improved, the change is kept and the next angle
is compared to that of the secondary structure, other-
wise the original angle and its corresponding fitness are
kept. The SO continues to sweep through each angle of
the template until a sweep of each angle in the template
does not result in an improved fitness value. Essentially
this means that the algorithm repeats the sweeping op-
eration until no better solution is found. The given sec-
ondary structure angles can be modified by the user via

30 Computational Nanoscience 2001, (www.cr.org), ISBN 0-9708275-3-9.

an input parameter. This allows the user to focus the lo-
calized search on specific angular combinations that are
expected to yield good results, while not restricting the
algorithm to only produce results similar to the inputs.

Following the SO, a second localized search opera-
tion is conducted. The Backbone Residue Sweep Oper-
ator (BRSO) analyzes n-1 of the n groups of backbone
residue angles ¢, ¥, and w. The analysis focuses on only
n-1 of the angular groups due to the data structure be-
ing utilized and the reduced versatility of the algorithm
that would occur if all n angular groups were analyzed.
The BRSO compares the template’s angles of each group
to those of the secondary structure under examination.
If at least one of the three angles in the group has a
percentage rating greater than the percentage indicated
by the input parameter, then the remaining two angles
of that group are modified to reflect the accepted sec-
ondary structure. The resulting string is evaluated and
as before the change is only kept if the resulting string
has an improved fitness value. The BRSO operator con-
tinues to sweep through the groups of angles of the tem-
plate until a sweep of each group in the template does
not result in an improved fitness value.

The resulting changes to the template from this SSA
are only kept if they produce an improved fitness values
in the template. The algorithm then continues to exe-
cute until all BB sizes are completed. Only the backbone
angles were looked at in this study due to the effect that
optimizing those angles has on the results of the algo-
rithm. The authors are aware that optimization of the
side chain positions are important, but this was not the
focus of the paper. The main motivation for the SSA
was to utilize the building block information that is ob-
tained from each execution of the algorithm for different
BB sizes. In the original algorithm, once the algorithm
completes, all of the BB information is thrown away and
the next BB iteration is executed. The modifications
that we have presented here allow us to utilize this BB
information in terms of predicting secondary structure.
In the next section we present the results obtained from
the addition of this SSA.

4 TESTING AND RESULTS

All of the tests were conducted in parallel on our
Cluster of Workstations. A total of seven Intel Pen-
tium IIT machines consisting of five 933 MHz machines
and two 1 GHz machines were chosen from the available
pool of machines. These machines are interconnected
via a 100 Mbps fast Ethernet switch. The operating
system that the fmGA code was executed on was Red
Hat Linux 6.2. The code was written in ANSI C with
Message Passing Interface (MPI) constructs to execute
in parallel. This algorithm was previously parallelized to
allow for interoperability on different parallel platforms
(2], [6]- In particular, the parallelization centered on all

Table 1: Constraint Analysis

fmGA with SSA (model Polyalinine)

SSA Max Median Best Average | Stand
% Fitness Fitness Fitness Fitness Dev

0% -100.160 | -125.449 | -136.433 | -123.573 | 10.881
5% -110.490 | -130.933 | -133.811 | -125.449 | 9.635

10% | -101.837 | -128.188 | -138.137 | -123.588 | 13.425
15% | -110.286 | -130.105 | -140.560 | -129.495 | 8.943

20% | -104.369 | -134.745 | -143.786 | -131.767 | 11.054
25% | -120.941 | -132.295 | -139.384 | -131.469 | 6.233
30% | -116.572 | -136.028 | -139.445 | -132.374 | 8.725
35% | -107.275 | -135.722 | -145.900 | -133.244 | 10.406
40% | -106.880 | -131.993 | -137.386 | -128.940 | 9.262
45% | - 98.273 | -133.537 | -145.450 | -131.819 | 13.072
50% | -104.501 | -132.501 | -143.801 | -130.846 | 10.594
60% | -123.386 | -137.333 | -145.439 | -136.655 | 6.564

70% | -122.441 | -133.848 | -141.089 | -133.201 | 5.813
80% | -109.138 | -136.016 | -145.695 | -133.499 | 10.880

90% | -125.925 | -137.140 | -145.923 | -136.323 | 6.777

100% | - 93.407 | -127.440 | -131.671 | -122.959 | 12.089

three phases of the fmGA. Synchronous MPI commu-
nication calls were utilized to conduct communications
between machines.

The fmGA algorithm was executed 10 times for all
experiments in order to provide statistical results. All of
the results presented in tables 1 and 2 are thus averaged
over 10 runs. The population size is the total population
over all machines. Over all runs and population sizes
the following fmGA parameters were kept constant; cut
probability = 0.02, splice probability = 1.00, primordial
generations = 200, juxtapositional generations = 200,
total generations = 400. An input schedule was used to
specify at what generations BBF would occur, and the
sizes of the building blocks the algorithm would utilize.
Tests were conducted using both the [Met]-Enkephelin
and model Polyalanine peptides. The results are pre-
sented here as a comparison.

The results from the first set of experiments is pre-
sented in Table 1. These experiments were run to de-
termine what effects modifying the input constraint pa-
rameter would have on the overall effectiveness of the
algorithm on the peptide model Polyalanine. There-
fore, the algorithm was executed 10 times for different
percentage values on a single processor with a constant
population size of 30. In each of these runs, both the
dihedral angle constraint and the percentage constraint
described earlier were kept the same as well as the fmGA
parameters previously specified. The results from Table
1 indicate that the use of the SSA produced the best
results, in terms of the best result found, with the SSA
percentage set between 15-90%. What can be concluded
from this is that the secondary structure analysis is in-
tegral to finding improved solutions. Additionally the
low and high ends did not produce very good results
since both extremes require the population to have the
exact angles of the secondary structure or a large per-
centage of those angles present in the population. There

Computational Nanoscience 2001, (www.cr.org), ISBN 0-9708275-3-9. 31

Table 2: Protein Energy Fitness Values

fmGA without SSA ([Met]-Enkephelin)
Pop Max Median Best Average | Stand
Size | Fitness Fitness Fitness Fitness Dev
100 | -22.189 -26.133 -29.598 -25.976 | 2.045
200 | -22.721 -26.114 -28.075 -26.167 1.606
400 | -26.608 -27.582 -30.315 -27.865 1.240
800 | -23.979 -27.061 -30.141 -26.899 1.991
fmGA with SSA ([Met]-Enkephelin)
Pop Max Median Best Average | Stand
Size | Fitness Fitness Fitness Fitness Dev
100 | -23.860 -25.181 -29.615 -25.675 1.579
200 | -23.356 -26.355 -29.389 -26.347 1.739
400 | -25.349 -27.122 -30.054 -27.288 1.548
800 | -24.973 -27.304 -30.041 -27.593 1.642
fmGA without SSA (model Polyalinine)
Pop Max Median Best Average | Stand
Size | Fitness Fitness Fitness Fitness Dev
100 | -107.970 | -125.792 | -137.711 | -126.745 | 9.766
200 | -114.521 | -136.491 | -140.097 | -131.804 | 8.961
400 | -127.158 | -136.440 | -143.126 | -135.559 | 5.183
800 | -137.429 | -139.203 | -150.731 | -140.893 | 4.377
fmGA with SSA (model Polyalinine)
Pop Max Median Best Average | Stand
Size | Fitness Fitness Fitness Fitness Dev
100 | -120.727 | -131.821 | -146.498 | -134.587 | 7.948
200 | -132.302 | -138.315 | -148.532 | -138.840 | 4.458
400 | -134.452 | -139.478 | -149.222 | -140.618 | 4.432
800 | -133.226 | -140.827 | -152.053 | -140.920 | 4.743

is some minor fluctuation present in the results obtained
between 15-90% as would be expected with a stochastic
algorithm.

The results obtained from the second set of experi-
ments is presented in Table 2. Table 2 illustrates that
our modified fmGA algorithm is more effective at find-
ing a lower energy value when utilizing the SSA. The
data obtained from the SSA modified fmGA when ap-
plied to the Polyalanine peptide indicates that in all
cases of population sizes tested, the standard deviation,
median, best, and average fitness values were lower i.e.
improved over the results obtained without the SSA.
The results obtained from the fmGA as applied to the
[Met]-Enkephelin pentapeptide showed no considerable
difference with or without the SSA. This was expected
since the [Met]-Enkephelin pentapeptide does not have
a secondary structure. Additionally the use of the SSA
has very little overhead in terms of the computational
cost. In all experiments run, the number of additional
fitness calls conducted with the SSA were less than 0.1%
of the number of fitness calls conducted without the
SSA. Therefore the SSA essentially does not increase
the specific computational requirements of the fmGA
algorithm.

It is clear that the Polyalinine peptide which is nearly
300% larger than the Met-Enkephalin, in terms of the
number of residue angles and almost 250% larger in
terms of the data structure takes a considerable amount
of time to analyze; however, the goal of this paper was
not to find a solution to larger proteins in the same time

32

as smaller ones but instead to find “good” solutions to
the larger proteins. The results presented here validate
our work as an improvement in the effectiveness of the
fmGA.

5 CONCLUSIONS

This paper has shown that it is possible to increase
the effectiveness of the fmGA through the addition of
secondary structure information. We have shown that
the secondary structure analysis conducted improved
the final energy obtained in all cases over the original
algorithm for the Polyalanine peptide.

Future work will investigate increasing the number of
secondary structures that the algorithm utilizes. Also,
we will study varying fmGA parameter values as well as
the increased utilization of BB information.

REFERENCES

[1] R. Pachter and Z. Wang, “Prediction of Polypep-
tide Conformation by the Adaptive Simulated
Annealing Approach”, Journal of Computational
Chemistry, 18, 323, 1997.

[2] G. H. Gates, Jr., R. Pachter, L. D. Merkle, and G.
B. Lamont, “Parallel Simple GAs vs Parallel Fast
Messy GAs for Protein Structure Prediction”, Pro-
ceedings of the Intel Supercomputer Users’ Group
Users Conference, 1995.

[3] D. E. Goldberg, K. Deb, H. Kargupta, G. Harik,
“Rapid, Accurate Optimization of Difficult Prob-
lems Using Fast Messy Genetic Algorithms”, Uni-
versity of Illinois at Urbana-Champaign, IIliGAL
Report 93004, 1993.

[4] L. D. Merkle, G. H. Gates, Jr., G. B. Lamont, and
R. Pachter, “Application of the Parallel Fast Messy
Genetic Algorithm to the Protein Structure Pre-
diction Problem”, Proceedings of the Intel Super-
computer Users’ Group Users Conference, 189-195,
1994.

[5] S. R. Michaud, “Solving the Protein Structure
Prediction Problem with Parallel Messy Genetic
Algorithms”, MS Thesis, AFIT/GCS/ENG/01M,
Air Force Institute of Technolgy, Wright Patterson
AFB, OH.

(6] S. R. Michaud, J. B. Zydallis, D. M. Strong, and
G. B. Lamont, “Load Balancing Search Algorithms
on a Heterogeneous Cluster of PCs”, STAM, 2001.

[7] D. R. Westhead and J. M. Thornton, “Protein
Structure Prediction”, Current Opinion in Biotech-
nology, 9, 383-389, 1998.

[8] D. Frishman and P. Argos, “Seventy Five Percent
Accuracy in Protein Secondary Structure Predic-
tion”, Proteins, 29, 443-460, 1997.

Computational Nanoscience 2001, (www.cr.org), ISBN 0-9708275-3-9.

