A Study on the System Configuration for the Flywheel Energy Storage Device to be Applied to the Railway System

Jun-Ho Lee*

*Korea Railroad Research Institute
#176, Cheoldo bangmulgwan-ro, Uiwang, Gyeonggi-Do, 437-757, Korea, jhlee77@krri.re.kr

ABSTRACT

A system configuration to be applied to the railway system using flywheel energy storage system to store regenerative energy which is generated during the braking period of the train is presented. The proposed FESS (Flywheel Energy Storage System) is small scale model and has 100W output power, high rotational speed. In general railway trains generate regenerative energy for 10-20 sec when the train brakes and also high traction energy is needed for very short moment (10 sec) when the train increases the traction force. Considering such characteristics of the railway system energy storage system for the railway should have very fast response property. Among the various energy storage systems flywheel energy storage system has the fastest response property, which means that flywheel ESS is the most suitable for the railway system.

Keywords: Magnetic Bearings, Active control, Flywheel, Railway, Energy Storage

1 INTRODUCTION

Flywheel energy storage system is used to store excess electrical energy into mechanical rotational energy. The stored rotational energy is converted into electrical energy to supply that energy to the electrical machines etc. when it is needed. In order to make energy conversion between the electrical and mechanical energy or mechanical and electrical energy a power conversion device, high speed rotational flywheel to store rotational energy, rotational rotor, bearings to support the high speed rotational rotor, and housing are needed.

In general railway trains generate regenerative energy for 10-20 sec when the train brakes, on the other hand high traction energy is needed for very short moment (10 sec) when the train increases the traction force. Considering such characteristics of the railway system energy storage system for the railway should have very fast response property. Among the various energy storage systems flywheel energy storage system has the fastest response property, which means that flywheel ESS is the most suitable for the railway system.

Many researchers have invested their effort to develop flywheel ESS with focusing on the development of the high speed flywheel module rather than the system level development including an operational system for the energy conversion. The major groups for the flywheel ESS are KTSi(Kinetic Traction System Inc.), Vycon, University of Virginia, KRRI(Korea Railroad Research Institute), Piller Power Systems, etc. Among them KTSi and KRRI have tried to develop flywheel ESS which is applicable to the railway system. KTSi has tested its flywheel ESS in the Bombardier light rail test track in 2012 which is in Kingston, Canada. It has 35,000rpm operational speed, 200kW*2, and completely passive type. On the other hand KEPRI (Korea Electrical Power Research Institute) has tried to develop 100kW, 350kW/unit super conductor flywheel ESS, however due to the high energy capacity to implement they seem to be in trouble.

In this paper the system configuration for the flywheel ESS including operational system for the energy conversion and the design and manufacturing of small-scale flywheel energy storage system (five-degrees-of-freedoms) supported by magnetic bearings are presented.

The effectiveness of the proposed flywheel energy storage system is shown based on the high speed rotational test and also the applicability of the proposed configurations to the railway system is presented by using the energy conversion of the flywheel energy storage system that indicates the charging of the regenerative energy and discharging for the traction force based on the load test.

2 MATHEMATICAL MODEL

Fig. 1 presents a flywheel rotor supported by the magnetic bearings which has four-degrees-of-freedom. For the rotational rotor, left and right electromagnetic bearings support the rotor to make levitation so that the rotor can rotate without any contact with the stator. Displacement sensors are attached to very close to the electromagnetic bearings to make feedback of the displacement deviation which make it possible for the rotor to be controller actively.

Equation of motion of the rotor shown in Fig. 1 is such as:

\[M \ddot{q} + G \dot{q} = s T_M^{AMB} \]

where

\[y = s T_M q \]
The mass matrix that is composed of mass and moment of inertia, G is the gyroscope matrix that is 0 when the rotor stops, however the amplitude becomes greater gradually as the rotational speed goes up. M_T is the transformation matrix to transform the bearing coordinates to mass center coordinates, and s_M is the transformation matrix to transform mass center coordinates to displacement sensor coordinates. q is the vector that expresses the position of the radial directions and the rotational angles in the mass center coordinates. u_{AMB} is the force that is generated from the magnetic bearings, and y is the distance that is measured from the displacement sensor to the rotor.

$$q = (\beta, x, -\alpha, y)^T$$

$$u_{AMB} = (f_{xa}, f_{xb}, f_{ya}, f_{yb})^T$$

$$y = (x_{aA}, x_{aB}, y_{aA}, y_{aB})^T$$

M is the mass matrix that is composed of mass and moment of inertia, G is the gyroscope matrix that is 0 when the rotor stops, however the amplitude becomes greater gradually as the rotational speed goes up. M_T is the transformation matrix to transform the bearing coordinates to mass center coordinates, and s_M is the transformation matrix to transform mass center coordinates to displacement sensor coordinates. q is the vector that expresses the position of the radial directions and the rotational angles in the mass center coordinates. u_{AMB} is the force that is generated from the magnetic bearings, and y is the distance that is measured from the displacement sensor to the rotor.

$$u_{AMB} = [f_{xa}, f_{xb}, f_{ya}, f_{yb}]^T = [-k_{sA} 0 0 0 ; 0 k_{sB} 0 0 ; 0 0 k_{sA} 0 ; 0 0 0 k_{sB}] + [i_{xa} i_{xb} i_{ya} i_{yb}]$$

$$= -K_s q_B + K_s i$$

From the eqn. (1) and eqn. (4) the linearized equation of motion is such as:

$$M \ddot{q} + G \dot{q} = -s_T \dot{q} - (K_s q_B + K_s i)$$

The vector q_B is transformed to mass center coordinates by using the transformation matrix M_T which is expressed as

$$q_B = (M_T)^T q$$

Substituting eqn. (6) for eqn. (5) yields

$$M \ddot{q} + G \dot{q} = -s_T \dot{q} - s_M M_B T K_s i$$

$$M \ddot{q} + G \dot{q} + K_s q_B = s_T \dot{q}$$

where

$$K_s M = M_T B K_s M_T^T = [K_{sM11} K_{sM12} 0 0 ; K_{sM12} K_{sM22} 0 0 ; 0 0 K_{sM33} K_{sM34} ; 0 0 K_{sM43} K_{sM44}]$$

As seen in eqn. (7) the mathematical model of the four-degrees-of-freedom rotational machine supported by magnetic bearings is very similar to the 2nd order mechanical system. However the rotor shaft is coupled due
to the gyroscopic effect and the non-colocation problem between the displacement sensors and the magnetic bearing actuators as shown in the eqn. (7).

Voltage equations for the magnetic bearing coil are expressed in eqn. (8).

$$V = Ri + L \frac{di}{dt} - K_i \frac{dq}{dt}$$

(8)

Eqn. (8) can be modified to present matrix pattern as:

$$[\begin{array}{c} v_{xA} \\ v_{xB} \\ v_{yA} \\ v_{yB} \end{array}] = [\begin{array}{cccc} R_A & 0 & 0 & 0 \\ 0 & R_B & 0 & 0 \\ 0 & 0 & R_A & 0 \\ 0 & 0 & 0 & R_B \end{array}] [\begin{array}{c} i_{xA} \\ i_{xB} \\ i_{yA} \\ i_{yB} \end{array}]$$

$$+ [\begin{array}{cccc} L_A & 0 & 0 & 0 \\ 0 & L_B & 0 & 0 \\ 0 & 0 & L_A & 0 \\ 0 & 0 & 0 & L_B \end{array}] \begin{array}{c} \dot{i}_{xA} \\ \dot{i}_{xB} \\ \dot{i}_{yA} \\ \dot{i}_{yB} \end{array}$$

$$- [\begin{array}{cccc} k_{iA} & 0 & 0 & 0 \\ 0 & k_{iB} & 0 & 0 \\ 0 & 0 & k_{iA} & 0 \\ 0 & 0 & 0 & k_{iB} \end{array}] \begin{array}{c} x_{bA} \\ x_{bB} \\ y_{bA} \\ y_{bB} \end{array}$$

(9)

From eqn. (9) and by using transformation matrix $M T_B$ current slew rate is derived.

$$\frac{di}{dt} = L^T V - L^T Ri + K_i^{-1} K_s \frac{dq}{dt}$$

$$= L^T V - L^T Ri + K_i^{-1} K_s M T_B^{-T} \frac{dq}{dt}$$

(10)

The state space model for the four-degrees-of-freedom flywheel rotor can be presented by using eqn. (8) – (10).

$$[\begin{array}{c} \dot{q} \\ \dot{i} \end{array}] = [\begin{array}{cccc} 0 & I & 0 \\ -M^{-1} K_{sM} & -M^{-1} G & -M^{-1} M_T^T K_i \\ 0 & K_i^{-1} K_s M T_B^{-T} & -L^{-1} R \end{array}] [\begin{array}{c} q \\ \dot{i} \end{array}] + [\begin{array}{c} 0 \\ 0 \\ L^T V \end{array}]$$

(11)

3 FESS CONFIGURATION

Fig. 2 shows the overall system configuration that consists of flywheel system, vacuum pump, and levitation controller. The flywheel system has the flywheel rotor and the housing that rotational motor stator, upper, lower, and thrust magnetic bearings are to be installed in it. The vacuum pump is connected with the housing to make vacuum the inside of the housing, which increase the efficiency of the power conversion. The levitation controller levitates the rotor and controls the vibration of the rotor during the high speed rotation.

4 MANUFACTURING

In this section the each components that consist of the flywheel energy storage system are presented.

4.1 Rotational rotor

Fig. 3 presents rotational rotor that has thrust plate for the rotor levitation and wheel to store the excess electrical energy. The total weight of the rot is $23[kg]$.

69
4.2 Magnetic bearings

Fig. 3 shows the radial and thrust magnetic bearings to support the rotor in radial and in axial direction. They have 500[N] and 2500[N] maximum load capacity, respectively.

4.3 Housing

Fig. 5 indicates the hosing for the flywheel energy storage system. The height and the diameter of the hosing are 585[mm] and 550[mm], respectively.

5 EXPERIMENTAL RESULTS

Fig. 6 shows the run down test results for the vacuum pump when the speed of the rotor has been increased up to the 6,000[rpm]. In the figure the blue line and the green line are for the non-vacuum and vacuum, respectively. The blue line reaches to zero speed 178[sec] faster than that of the green line, which means the rotor rotates longer time in the vacuum.

Fig 7 and 8 are for the rotational test results at the 12,000[rpm] that shows 0.01[mm] vibration amplitude, which means very good centering position of the rotor.
Fig. 9 presents the output power for the different load level. In case of 1.7[Ω] the output power at 10,000[rpm] is 5[kW] and it is reduced to 100[W] at the rotational speed 1,400[rpm]. However for the lower level of the load (7[Ω] or 10[Ω]) than 1.7[Ω] the rotational speed to reach to the 100[W] is higher than that of the 1.7[Ω] load level, which means that higher load can use more energy.

6 CONCLUSIONS

In this paper the author presented flywheel energy storage system to be applied for the railway system. Mathematical model for the flywheel rotor (four-degrees-of-freedom), manufacturing of the FESS, and preliminary rotational test results were shown. Output power versus different load level tests were also performed and indicated that higher load can use more energy.

In the future to define the FESS efficiency various experimental tests will be performed.

REFERENCES