# Electrochemical characterization of $\mathbf{N a}_{\mathbf{x}} \mathbf{M O}_{2}$ as cathode materials in sodium battery 

V.H. Nguyen ${ }^{*}$, M.L.P Le ${ }^{*}$, L.T.N. Huynh ${ }^{*}$ and V.M. Tran ${ }^{* *}$<br>*Applied Physical Chemistry Laboratory, VNUHCM-University of Sciences<br>227, Nguyen Van Cu street, Ho Chi Minh City, Vietnam, lmlphung@hcmus.edu.vn<br>Department of Physical Chemistry, VNUHCM-University of Science<br>227, Nguyen Van Cu street, Ho Chi Minh City, Vietnam, tvman@hcmus.edu.vn


#### Abstract

$\mathrm{Na}_{\mathrm{x}} \mathrm{MO}_{2}$, with $\mathrm{M}=\mathrm{Mn}$ and Co as cathode materials in sodium-ion batteries, was synthesized by solid-state reaction at $600-850^{\circ} \mathrm{C}$. The manganese precusors were $\mathrm{MnO}_{2}$ prepared from electrolysis of $\mathrm{MnSO}_{4}$ solution, $\mathrm{MnCO}_{3}$ and $\mathrm{Mn}(\mathrm{AcO})_{2}$. The structure of synthesized materials was determined by X-rays diffraction and the morphology was investigated by Scanning Electron Microscope (SEM). The electrochemical properties were examined in $1 \mathrm{M} \mathrm{NaClO}_{4} / \mathrm{PC}$ as electrolyte by Cyclic voltagemetry (CV).The electrochemical behavior of synthesized materials exhibits complex insertiondeinsertion mechanism in the potential window $2-4 \mathrm{~V}$ vs $\mathrm{Na}^{+} / \mathrm{Na}$ with multi-peak in CV curve. These peaks correspond to the phase transitions with inserted/deinserted sodium contents. $\mathrm{Na}_{0.44} \mathrm{MO}_{2}$ synthesized from manganese acetate compound exhibits well-crystallized rod-shape particle, highest capacity and good cycling behavior compared to other manganese sources.


Keywords: cathode materials, insertion-deinsertion mechanism, $\mathrm{Na}_{0.44} \mathrm{NaO}_{2}, \mathrm{Na}_{0.74} \mathrm{CoO}_{2}$, sodium-ion batteries.

## 1 INTRODUCTION

Since commercialization, Li-ion batteries have been playing an important role as power source for portable electronic devices because of high gravimetric, volumetric capacity and high voltage. Futhermore, Li-ion batteries have also been desired to be the large scale application such as hydrid electric vehicule or smart grid system; and thus, the demand of lithium raw material increases more and more. Unfortunately, the resource of lithium raw material is limited, increasing the price of these raw material. In order to solve the problem of lithium raw resoure, sodium is proposed as a solution for next generation power source storage, for example as sodium ion battery [1].

Some cathode materials in sodium ion battery were studied like layered metallic oxide or phosphorus oxide based transiton metals: $\mathrm{Na}_{\mathrm{x}} \mathrm{MO}_{2}, \mathrm{Na}_{\mathrm{x}} \mathrm{MPO}_{4}(\mathrm{M}=\mathrm{Co}, \mathrm{Ni}$, $\mathrm{Mn}, \mathrm{Ti} . .$.$) which could intercalate sodium ion. Among$ them, $\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$ and $\mathrm{Na}_{0.74} \mathrm{CoO}_{2}$ have been greatly attracted as a novel cathode material for sodium ion battery because of its theorical capacity of $121 \mathrm{mAh} / \mathrm{g}, 112 \mathrm{~mA} . \mathrm{h} / \mathrm{g}$ respectively and good performance [2].

For synthesis of $\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$, solid state reaction is the first route with precusor of $\mathrm{MnCO}_{3}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Beside solid state reaction, $\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$ was also prepared by polymer-pyrolysis method and hydrothermal route for nanostructure (nanowire, nanobelt) from $\mathrm{CH}_{3} \mathrm{COONa}$, $\mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ [3-6]. The synthesis of $\mathrm{Na}_{0.74} \mathrm{CoO}_{2}$ was also reported by solid state reaction [7].

In this paper, we report the synthesis and electrochemical properties of $\mathrm{Na}_{\mathrm{x}} \mathrm{MO}_{2}(\mathrm{M}=\mathrm{Mn}, \mathrm{Co})$ as cathode materials in sodium-ion battery. The $\mathrm{Na}_{\mathrm{x}} \mathrm{MO}_{2}$ were prepared by different manganese source compounds such as: electrolytic $\mathrm{MnO}_{2}, \mathrm{Mn}(\mathrm{AcO})_{2}$ and $\mathrm{MnCO}_{3}$.

## 2 EXPERIMENTALS

$\mathrm{Na}_{\mathrm{x}} \mathrm{MO}_{2}$ materials with $\mathrm{M}=\mathrm{Mn}$ and Co was prepared by solid-state reaction at $600-850^{\circ} \mathrm{C}$. In case of manganese, the manganese precusors were $\mathrm{MnO}_{2}$ obtained from electrolysis of $\mathrm{MnSO}_{4}$ solution, $\mathrm{MnCO}_{3}$ (Sigma Aldrich, $99,9 \%$ ), $\mathrm{Mn}(\mathrm{AcO})_{2}$ (Reagent $\mathrm{ACS},>99 \%$ ), and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (Merck, $>99,9 \%$ ). In case of cobalt, precusors were a mixture of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ (Sigma Aldrich, $99,9 \%$ ) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$. All the precursors were heated at $300^{\circ} \mathrm{C}$ for 8 hours to decompose all of carbonates, acetate; then re-grounded and pressed into pellets. The pellets were calcinated repeatedly in air at diferent conditions (Table 1). After that, the final products were cooled to room temperature.

Table 1: Summary of $\mathrm{Na}_{\mathrm{x}} \mathrm{MO}_{2}$ samples synthesized at different conditions.

| Sample | Precusors |  | Temperature | Time |
| :---: | :---: | :---: | :---: | :---: |
| NMO-1 | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | MnCO | $800^{\circ} \mathrm{C}$ | 9 hours |
| NMO-2 | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | $\mathrm{Mn}(\mathrm{AcO})_{2}$ | $800^{\circ} \mathrm{C}$ | 9 hours |
| NMO-3 | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | $\mathrm{MnO}_{2}$ | $800^{\circ} \mathrm{C}$ | 9 hours |
| NCO-1 | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ | $650^{\circ} \mathrm{C}$ | 24 hours |
| NCO-2 | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ | $800^{\circ} \mathrm{C}$ | 24 hours |
| NCO-3 | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$ | $900^{\circ} \mathrm{C}$ | 24 hours |

Structures of these samples were identified by powder X-ray diffraction, using a X'Pert PRO MPD PANalytical diffractometer with Co $\mathrm{K} \alpha$ radiation, $0.02^{\circ}$ and $20 \mathrm{~s} / \mathrm{step}$ counting time. The diffraction patterns was collected for $2 \theta$ between $10^{\circ}$ to $70^{\circ}$. The morphology and the distribution of grain size were determined by using a Carl Zeiss MERLIN Scanning Electronic Microscope (SEM) instrument.

The intercalation/deintercalation properties of $\mathrm{Na}_{\mathrm{x}} \mathrm{MO}_{2}$ compounds were investigated by using Cycling voltammetry in organic electrolyte 1 M NaClO 4 /propylene carbonate. The electrochemical cell consits of three electrodes: the counter electrode was sodium wire, the reference electrode was sodium wire in $\mathrm{NaClO}_{4}$ electrolyte, the working electrode was electrode material coated on the Au surface. The scaning rate used was $10 \mu \mathrm{~V} / \mathrm{s}$.

The cycling behavior of these materials were measured in a coin-type cell 2025. The positive electrode was composed on active material ( $80 \%$ wt.), acetylen black ( $7.5 \% \mathrm{wt}$.), graphite ( $7.5 \% \mathrm{wt}$.) and teflon ( $5 \% \mathrm{wt}$.). The mixture was pressed directly on a stainless steel grid under a pressure of 5 ton per $\mathrm{cm}^{2}$. Negative electrode was sodium metal and $\mathrm{NaClO}_{4} 1 \mathrm{M}$ in propylene carbonate (PC) was used as electrolyte. Cells were assembled in a glove box under argon to avoid oxygen and water. Electrochemical studies were carried out by using VMP3 apparatus (BioLogic - France).

## 3 RESULTS AND DISCUSSION

## $3.1 \quad \mathbf{N a}_{0.44} \mathbf{M n O}_{\mathbf{2}}$ material

$\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$ crystallizes in an orthorhombic lattice cell with Pbam space group, which has large S -shaped tunnel structure. Structure of $\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$ is built on square pyramides $\mathrm{MnO}_{5}$ and octahera $\mathrm{MnO}_{6}$ (Figure 1a). All $\mathrm{Mn}^{4+}$ ions and a half of $\mathrm{Mn}^{3+}$ ions are occupied in octaheral sites while other $\mathrm{Mn}^{3+}$ ions are located in square pyramids. In case of sodium ions, Na1 site is placed fully in the small tunnel while the Na 2 and Na 3 are situated a half in large S shaped tunnels. According to this structure, direction of diffusion of sodium ions is oriented by axe c [8].

Table 2: Lattice parameters of $\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$ samples

| Sample | $\mathrm{a}(\AA)$ | $\mathrm{b}(\AA)$ | $\mathrm{c}(\AA)$ | Cell volume $\left(\AA^{3}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| NMO-1 | 9.115 | 26.40 | 2.828 | 680 |
| NMO-2 | 9.178 | 26.51 | 2.826 | 688 |
| NMO-3 | 9.078 | 26.44 | 2.827 | 678 |



Figure 1a: Structure of $\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$


Figure 1b: XRD patterns of $\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$ samples.
By using three different manganese sources, XRD patterns showed a well-crytallized $\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$ orthorhombic phase (Pbam space group) without impurities. The lattice parameters were determined (Table 2), which are in good agreement with previous reports [5-6].

The morphology of $\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$ samples was studied by scanning electron microscopy (SEM). The rod-shaped NMO particles are formed with typical dimensions of a few $\mu \mathrm{m}$ in length and about a $1 \mu \mathrm{~m}$ in width. The samples NMO-02 (precusor $\mathrm{Mn}(\mathrm{AcO})_{2}$ ) exhibits well crytallized and homogenous rod-shape particles in comparison with NMO01 and NMO-03.


Figure 2: SEM images of $\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$ sample (a) NMO-01, (b) NMO-02, (c) NMO-03.

In Figure 3, CV curve of NMO-02 at a scan rate 10 $\mu \mathrm{V} / \mathrm{s}$ presents 6 reversible redox pairs at anodic and cathodic scans, indicating the reversible complex insertion/deinsertion of Na ion into/out of the structure $\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$ with a multiphase evolution. The sodium ion intercalated firstly in the site Na 3 and Na 2 (S-shaped tunnel), after that, sodium ion moved to the site Na 1 (small tunnel) at the the end of intercalation. Sauvage et al. have reported that only 0.22 Na per unit can be extracted from
$\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$, while 0.44 Na can be inserted back, resulting in evolution of Na concentration in the range of 0.22-0.66 [3].


Figure 3: CV curve of NMO-02 at the scan rate $10 \mu \mathrm{~V} / \mathrm{s}$
In Figure 4 a , the discharge curves of $\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$ cathode materials in the potential range $2-4 \mathrm{~V}$ vs $\mathrm{Na}^{+} / \mathrm{Na}$ at $\mathrm{C} / 10$, shows the complex insertion/deinsertion mecanism of sodium ions. Six voltage plateaus are distinctly observed in the discharge curve, correspoding to 6 redox peaks in the CV curve. In the potential range of $2-4 \mathrm{~V}$, the sample NMO-02 exhibits an initial capacity of $115 \mathrm{mAh} \cdot \mathrm{g}^{-1}$, about $95 \%$ of the theoretical one. The samples NMO-01 and NMO-03 present a capacity of 106 and $100 \mathrm{mAh} . \mathrm{g}^{-1}$, respectively.


Figure 4: (a) $1^{\text {st }}$ charge/discharge curve of $\mathrm{Na}_{\mathrm{x}} \mathrm{MnO}_{2}$ and (b) Cycling performance of $\mathrm{Na}_{\mathrm{x}} \mathrm{MnO}_{2}$ samples.

Figure 4 b showed the cycling performance stability of $\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$ at $\mathrm{C} / 10$. After 20 cycle, NMO-02 still has
discharge capacity of $108 \mathrm{mAh} . \mathrm{g}^{-1}$, maintain $90 \%$ of the initial value. NMO-01 is almost stable with a discharge capacity of $100 \mathrm{mAh} \cdot \mathrm{g}^{-1}$. However, capacity of NMO-03 is decreased afer each cycle, it presents a $62 \mathrm{mAh} \cdot \mathrm{g}^{-1}$ in $20^{\text {th }}$ cycle. We believe that the capacity fading of NMO-03 which is affected by the morphology and the distribution of grain size. The homogeous particles morphology and wellcrystallized grains facilitate the diffusion pathway of sodium ion in the small tunnel of $\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$ [4].

## $3.2 \mathbf{N a}_{0.74} \mathbf{C o O}_{2}$ material

$\mathrm{Na}_{0.74} \mathrm{CoO}_{2}$ crystallizes in a layer structure type P2phase, which exhibits an ABBA oxygen packing with cobalt ions in octahedral sites and sodium ions in two different types of trigonal prismatic site: $\mathrm{Na}_{\mathrm{f}}$ shares only faces with two $\mathrm{CoO}_{6}$ octahedra of adjacent slabs, whereas $\mathrm{Na}_{\mathrm{e}}$ shares edges with the six surrounding $\mathrm{CoO}_{6}$ octahedra [7,9].

Figure $4 b$ shows the XRD patterns of $\mathrm{Na}_{0.74} \mathrm{CoO}_{2}$ materials synthesized at different temperatures. The XRD peaks could be assigned to the reflection of crystal structure type of P2-phasewwith spacegroup $\mathrm{P} 63 / \mathrm{mmc}$. All three samples synthesized at $650^{\circ} \mathrm{C}, 800^{\circ} \mathrm{C}, 900^{\circ} \mathrm{C}$ during 24 h , the lattice parameters are found to be in the range $\mathrm{a}=2.83$ $\AA$ and $\mathrm{c}=10.88 \AA$ which are in good agreement with the previous reports. Moreover, the phase $\mathrm{P} 2-\mathrm{Na}_{0.74} \mathrm{CoO}_{2}$ appeared clearly at the beginning of $650^{\circ} \mathrm{C}$ instead of the presence of $\mathrm{Co}_{3} \mathrm{O}_{4}$ impurities. The samples at $800^{\circ} \mathrm{C}$ and $900^{\circ} \mathrm{C}$ exhibit single P 2 -phase without impurities.


Figure 5: XRD patterns of $\mathrm{Na}_{0.74} \mathrm{CoO}_{2}$ samples.
The electrochemical performance of $\mathrm{Na}_{0.74} \mathrm{CoO}_{2}$ materials was showed in Figure 5. This material could intercalate 0.45 ion sodium in the structure for the Na content per formula about $0.5<\mathrm{x}<1$. As previous reported, Na intercalation and deintercalation cycled between $2.0-3.8 \mathrm{~V}$ undergoes complicated series of successively phase transitions, which have been investigated by in-situ XRD measurement [10]. The charge/discharge curve of P2-phase $\mathrm{Na}_{0.74} \mathrm{CoO}_{2} / \mathrm{NaClO}_{4} / \mathrm{Na}$ cell exhibits different small voltage domains with narrow sodium composition range, particularly 4 plateaux principal
at 3.6, 3.2, 2.9 and 2.6 V (Figure 5). The initial charge and discharge are found to be about 60 and $90 \mathrm{mAh} . \mathrm{g}^{-1}$.

The cycling performance of $\mathrm{Na}_{0.74} \mathrm{CoO}_{2}$ was presented in Figure 6. The discharge capacity in the $20^{\text {th }}$ cycle is $97 \%$, which is $97 \%$ of the initial value. The retention capacity may be better in $\mathrm{NaPF}_{6}$ electrolyte than in $\mathrm{NaClO}_{4}$ electrolyte, as reported previous by Tirado's group [11].


Figure 5: $1^{\text {st }}$ charge/discharge curve of $\mathrm{Na}_{0.74} \mathrm{CoO}_{2} / \mathrm{NaClO}_{4} / \mathrm{Na}$ cell.


Figure 6: Cycling performance of $\mathrm{Na}_{0.74} \mathrm{CoO}_{2} / \mathrm{NaClO}_{4} / \mathrm{Na}$ cell.

## 4 CONCLUSIONS

In this work, the cathode materials were sucessfully synthesized by a solid state reaction in air. $\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$ prepared from precusor $\mathrm{Mn}(\mathrm{AcO})_{2}$ exhibit a wellcrystallized, highest capacity ( $115 \mathrm{mAh} . \mathrm{g}^{-1}$ ) and besy cycling performance compared to other precursors. The $\mathrm{Na}_{0.74} \mathrm{CoO}_{2}$ material showed a capacity of $93 \mathrm{mAh} . \mathrm{g}^{-1}$ and good cyclability. Further work is needed to explore the multiphase transition of $\mathrm{Na}_{0.44} \mathrm{MnO}_{2}$ during the charge/discharge process.

## ACKNOWLEDGEMENTS

This work was supported by Vietnam National University of Ho Chi Minh City throught grant B2011-18-

01-TĐ. We would like to thank the support of Group GESMAT (ICMPE - UMR 7182, France)

## REFERENCES

[1] Palomares V., Serras P., Villaluenga I., Hueso K. B., Carretero-Gonzalez J. and Rojo T, Energy Environ. Sci., 5, 5884-5901, 2012.
[2] Slater M. D., Kim D., Lee E. and Johnson C. S., Adv. Funct.Mater., 23(8), 947-958, 2012.
[3] Sauvage F., Laffont F., Tarascon J-M. and Baudrin E, Inorg. Chem., 48(8), 3289 - 3294, 2007.
[4] Honoso E., Saito T., Okubo M., Saito Y., NishioHaname D., Kudo T. and Zhou H., Journal of Power Source, 217, 43-46, 2012
[5] Zhao L., Ni J. F., Wang H. and Gao L. J, Funct. Mater. Lett. 6(2), 1350012-1350016, 2013
[6] Zhao L., Ni J., Wang. and Gao L., RCS Advances, 3(18), 6650-6655, 2013
[7] Berthelot R., Carlier D. and Delmas C., Nat. Mat., 10(1), 74-80, 2010
[8] Kim H.J., Kim D.J., Seo D.H., Yoem M.S., Kang K.S., Kim D.K. and Jung Y.S., Chem. Mat. 24(6), 1205-1211, 2012
[9] Ding J. J., Zhou Y. N. and Sun Q., Electrochim. Acta 87, 388-393, 2013
[10] R. Berthelot, D. Carlier, C. Delmas, Nature Materials 10, 74, 2011.
[11] C. Vidal-Abarca, P. Lavela, J. L. Tirado, A.V. Chadwick, M. Alfredsson, E. Kelder, Journal of Power Sources 197, 314, 2012.

