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ABSTRACT 
 

Engineered nanomaterials (ENMs) have significant 
commercial potential in a broad range of industries for 
consumer products as a result of their novel properties.  
However, these same properties may cause unexpected 
risks once ENMs are released into the environment either 
intentionally or unintentionally.  Thus, standard methods 
are needed to accurately and reproducibly assess the 
potential risk of ENMs.  One factor that limits the 
applicability of standard ecotoxicology test methods for use 
with ENMs is that the unique behaviors of ENMs may 
cause artifacts or misinterpretations in these tests as a result 
of their unique behaviors.  We briefly discuss these artifacts 
and misinterpretations and provide an illustrative example. 
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1 INTRODUCTION 
 

Nanotechnology promises exciting innovations in a broad 
range of fields, and nanomaterials have substantial potential 
for incorporation into consumer products.  Nanomaterials 
are defined using the definition from the International 
Organization for Standardization (ISO): engineered 
nanomaterials (ENMs) are materials with any external 
dimension between 1 nm and 100 nm or having an internal 
surface structure in those dimensions [1, 2]; other agencies 

such as the FDA may not necessarily operate under this 
strict definition.  One issue that has limited the 
commercialization of ENM-containing products is their 
potential impacts on humans and the environment.  
Standard methods are needed for assessing the potential 
risks of ENMs, but the behaviors of ENMs differ 
substantially from those of traditional environmental 
pollutants such as hydrophobic organic chemicals and 
inorganic pollutants such as lead.  Moreover, a literature 
review of the nanotechnology environmental health and 
safety literature showed that uncertainty in the applicability 
of current standard test methods for use with ENMs is the 
most frequently cited source of uncertainty [3].   
 
One of the substantial differences between the behaviors of 
traditional environmental pollutants and ENMs during 
ecotoxicology testing is that ENMs may cause artifacts and 
misinterpretations during many of these tests.  While there 
have been numerous review articles on the ecotoxicity of 
ENMs in organisms [4-18], the potential experimental 
artifacts and misinterpretations during these tests have 
received substantially less attention.  For example, artifacts 
have been previously observed in nanoecotoxicology 
testing as a result of an unintended byproduct produced 
during the ENM dispersion process [19, 20] and from ENM 
interference with an assay reagent [21-27]. 
Misinterpretations in nanoecotoxicology testing are also 
possible if the effect observed is mistakenly attributed to 
nanoparticles when dissolved ions are actually the cause of 
the toxic effect. In a recently submitted review article [28], 
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we have systematically reviewed the potential artifacts and 
misinterpretations related to testing the potential 
ecotoxicological effects of ENMs.  Potential artifacts were 
identified at every step of nanoecotoxicology testing: 
during the initial material synthesis or procurement and 
associated impurities [29-31], ENM storage [32-36], ENM 
dispersion [19, 20, 37, 38], unacknowledged indirect 
toxicity effects such as nutrient depletion [39-41], and 
during the toxicity assays [21-27, 42-44].  Test 
recommendations for how to avoid or minimize these 
artifacts and misinterpretations were also provided 
including a comprehensive list of potential control 
experiments and what they could test.  In this proceedings 
paper, we will not reiterate the information from that 
review article, but rather briefly provide an example of an 
artifact observed as a result of coating desorption during 
storage which impacted the subsequent ecotoxicity 
measurement [36].   
 

2 EXPERIMENTAL 
 
The full experimental method is available in a previous 
publication [36].  Briefly, multiwall carbon nanotubes 
(MWCNTs) were treated with HNO3/H2SO4 (v/v = 3:1), 
filtered, and rinsed with boiling water.  These “3:1 
MWCNTs” were then grafted with polyethyleneimine (PEI) 
as described previously [45].  MWCNTs were produced 
with positive (MWCNT-PEI), negative (MWCNT-PEI-
Suc), or neutral (MWCNT-PEI-Ac) surface charges.  These 
materials were thoroughly dialyzed and then stored at 4°C 
for several months. 
 
Daphnia magna neonates (1 d to 2 d old) underwent 
immobilization tests at a range of concentrations (0 mg/L to 
40 mg/L) for MWCNTs and for each of the three types of 
PEI-modified MWCNTs [46].  Five replicates of ten 
neonates in 20-mL vials were tested after 24 h and 48 h 
with 3:1 or PEI-coated MWCNTs spiked to artificial 
freshwater (CaCl2 x 2H2O 58.8 mg L-1, MgSO4 x 2 H2O 
24.7 mg L-1, NaHCO3 13.0 mg L-1, and KCl 1.2 mg L-1; 
hardness [Ca+2]+[Mg+2] = 0.5 mM).  Several additional 
experiments were conducted to explore the potential for 
artifacts to influence the immobilization results. Solutions 
of each modified MWCNT at the highest concentrations 
tested were filtered using ashless Whatman cellulose filters 
(2.5 μm, grade 42) and Daphnia were exposed to the 
filtrate.  The PEI polymer by itself was also tested; PEI-Suc 
and PEI-Ac were not tested as a result of experimental 
challenges associated with the synthesis, purification, and 
identification of these polymers in the absence of their 
covalent bonding to MWCNTs prior to dialysis.  In 
addition, all three types of MWCNT-PEIs were dialyzed, 
and their toxicity tested immediately after dialysis.  The 
percentages of Daphnia immobilized after 24 h and 48 h of 
exposure were plotted against test concentrations and the 
data analyzed by statistical probit method (BioStat 2009, 
AnalystSoft) to calculate EC50 values (i.e., the 

concentration at which 50 % of the Daphnia become 
immobilized) and their 95 % confidence limits. 
 

3 RESULTS AND DISCUSSION 
 
One important unexpected finding of this study was 

that, while the filtrate from the MWCNT-PEI-Ac and 
MWCNT-PEI-Suc did not cause immobilization, the filtrate 
from the MWCNT-PEIs caused 18% immobilization.  This 
suggested that the PEI itself may exert a significant toxic 
effect on the neonates.  When the PEI by itself was tested, 
the 24 h EC50

 value was 19.3 mg/L which is within the 
range tested for the MWCNTs. When the MWCNTs were 
dialyzed immediately before the immobilization 
experiment, the toxicity for the MWCNT-PEI were 
significantly reduced (see Figure 1) while those for the 
MWCNT-PEI-Suc and MWCNT-PEI-Ac were unchanged.  
These results suggest that desorption of the PEI occurred to 
the MWCNT-PEI during storage which caused an 
overestimation of the MWCNT-PEI toxic effects.  This type 
of result prevents direct assignment of the toxicity to the 
nanomaterial.  This example demonstrates the value of 
conducting a filtrate-only control experiment to investigate 
potential toxic effects from compounds released from the 
ENMs. 

 
 

 
Figure 1: EC50 values for Daphnia magna exposed to 
regular and PEI modified MWCNTs.  Five replicates of ten 
neonates were tested per concentration, and five to seven 
concentrations were tested for each type of MWCNT. 
Values are given after 24 and 48 h for the whole mass of 
the MWCNT with the PEI coating as indicated by “whole 
nanomaterial,” and on the basis of the MWCNT core by 
itself as indicated by “MWCNT-mass basis.”  Values 
provided for the MWCNTs after they were recently 
dialyzed are marked “(newly) dialyzed.”  Error bars 
represent the 95 % confidence intervals. This figure is 
modified and reprinted with permission from [36] copyright 
(2011) American Chemical Society. 
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