Magnesium Ion Conducting Polymer Electrolytes: Potential Alternative as Non-lithium Electrolytes for All-Solid-State Battery Application

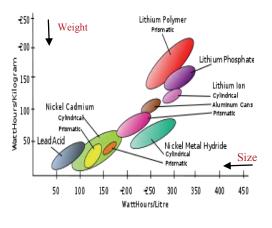
Rakesh Chandra Agrawal, Professor and Head

School of Studies in Physics & Astrophysics, Pt. Ravishankar Shukla University

RAIPUR-492010, C.G. INDIA

Email: rakesh c agrawal@yahoo.co.in

ABSTRACT


Majority of the portable batteries for mobile applications are Li⁺-ion polymer electrolyte/ Li-metal electrode batteries. These chemicals encounter several serious limitations while in use in electrochemical devices. To eliminate these limitations it has been strongly felt to look for alternate nonlithium electrolyte/ electrode systems. Mg²⁺-ion salts/ Mgmetal electrodes have recently been reported as possible/ potential alternate primarily due to the fact that these chemicals have comparable electrochemical characteristics to those of lithium chemicals and relatively cheaper/ non toxic. The present paper reports the current status of Mg^{2+} ion conducting polymer electrolyte materials including some new dry polymer electrolytes viz. Solid Polymer Electrolytes (SPEs)/ Nano Composite Polymer Electrolytes (NCPEs) synthesized by a novel hot-press technique at our laboratory along with characterization and All-Solid-State battery These batteries performed quite performance studies. satisfactorily under low current drain states.

Keywords: Non-lithium Polymer Electrolytes, Mg²⁺-ion conducting SPE/ NCPE Films, All-Solid-State Battery.

1. INTRODUCTION

Solid Polymer Electrolytes (SPEs) are currently considered as potential alternative to liquid/ aqueous electrolytes. SPE in thin/ flexible form show tremendous technological promises to develop all-solid-state compact/ light weight/ leak-proof rechargeable batteries in variety of shapes/ sizes including mini/micro batteries [1-10]. Majority of the batteries used today in portable electronic devices are Li⁺-ion batteries. They are based either on Li⁺-salt electrolyte solution immobilized in inert polymer matrix or dry polymer-Li⁺-salt complexes viz. 'Solid Polymer Electrolyte' (SPE)/ 'Nano Composite Polymer Electrolyte' (NCPE) films. SPE/NCPE film batteries can be potentially scaled-up to larger sizes to power EVs. Since 1990s, Li⁺-ion batteries have outperformed other conventional batteries viz. leadacid, Ni-Cd, Ni-MH etc. [11, 12]. Fig. 1, illustrating Ragone plot for different battery systems, clearly indicates the superiority of Li⁺- ion batteries over others [13]. However, Li⁺-ion salts and Li-metal encounter many inherent problems. These chemicals are highly reactive/ toxic hence, difficult to handle in the open ambience; less environment friendly hence, disposal of waste is always a problem; less

natural abundance hence, expensive. Besides, in the recent past there were some serious fire-hazards were reported while using these batteries. Very recently, Li⁺-ion batteries in American 'Dreamliner' Jets exploded/ caught fire in-flight (Fig. 2) [14] and as a result all flights were grounded. Thus, looking to high priority safety concerns, the power sources based on Li⁺-chemicals may involve serious risks and hence, some non-lithium electrolytes/ electrodes must be explored. In this regard, Mg^{2+} –ion salts and Mg–metal electrode have recently been looked upon as appropriate choice in place of Li⁺-salt and Li-metal electrode [15, 16]. This is due to the fact that electrochemical characteristics viz. electrochemical equivalence, negative electrode potential as well as ionic radii of Mg²⁺-salt/ Mg-metal and Li⁺-ion salts/ Li-metal are quite comparable. Mg^{2+} -ion displaces twice as much charge as Li^+ -ion and the batteries based as Mg^{2+} -ion polymer electrolytes do not require intercalation electrodes as in case of Li⁺ -ion rechargeable batteries. Moreover, Mg⁺-salts Mgmetal are relatively inexpensive, abundantly available, nontoxic and very safe in use.

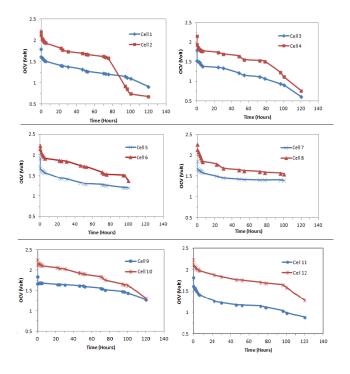
Fig. 1: Ragone plot for different battery systems [13].

We at the present research laboratory synthesized number of SPE/NCPE films using different Mg^{2+} - ion complexing salts [17, 18] and after identifying the optimum conducting films by characterizing their materials / ion transport properties, fabricated all-solid-state batteries. The present paper reports

the electrochemical cell performance studies on these batteries.

Fig. 2 'Dreamliner Jet': Li-ion Battery exploded on-flight [14].

2. EXPERIMENTAL


SPE/NCPE films were cast by hot-press technique. This technique is relatively much quicker / inexpensive/ solution free/ dry procedure and can be preferred over the traditional solution–cast method. The details on both the casting procedures have appeared elsewhere in the literature [10, 17–20]. On the basis of materials/ion transport characterization studies, following SPE/NCPE films have been found to exhibit optimum room temperature conductivity value (σ_{rr}):

SPE/ NCPE Films	$\sigma_{rt} (S/cm)$
SPE: [80PEO: 20Mg(CF ₃ SO ₃) ₂] SPE: [85PEO: 15 Mg (ClO ₄) ₂] NCPE: [85PEO: 15Mg (ClO ₄) ₂] + 5% TiO ₂ NCPE: [85PEO: 15Mg (ClO ₄) ₂] + 3% MgO(nano) NCPE: [80PEO: 20Mg(CF ₃ SO ₃) ₂] + 4% TiO ₂ NCPE: [80PEO: 20Mg(CF ₃ SO ₃) ₂] + 5% MgO(nano)	$\begin{array}{c} : \sim 3 \times 10^{-6} \\ : \sim 3 \times 10^{-6} \\ : \sim 1 \times 10^{-5} \\ : \sim 1 \times 10^{-5} \\ : \sim 2 \times 10^{-5} \\ : \sim 2 \times 10^{-5} \end{array}$

High purity/ precursor chemicals (Sigma-Aldrich, USA), used to cast SPE/ NCPE films, are: **Polymeric host**: Poly(ethylene oxide) PEO (Mw ~ 6 x 10^5), **Complexing salts**: (Magnesium trifluoromethane-sulphonate) Mg (CF₃SO₂)₂, Magnesium perchlorate Mg(ClO₄)₂ (purity > 99%), **Filler materials**: TiO₂ (>99%, <100 nm), MgO (>99%, <100 nm) as IInd-phase passive/active dispersoid, dispersed into Ist-phase SPE host to form NCPE films. Mg – metal powder (>99% Sigma-Aldrich) as anode and different cathode mixtures: ($C + MnO_2 + Electrolyte$) & ($C + I_2 + Electrolyte$) in thin pallet form were used to sandwiched the SPE/NCPE films to fabricate **All-Solid-State Batteries** in the cell configuration: *Anode* (*Mg*)// *SPE*/ *NCPE film*// *Cathode*.

3. RESULTS AND DISCUSIONS

The Open Circuit Voltage (OCV) and cell potential discharge characteristics were studied at room temperature. Fig. 3 shows potential profiles for **Cell ## 1-12** when discharge through 100 K Ω load. Except for an initial and final drop due to well-known polarization build-up effect, the cell potentials remained practically flat for 100 hrs. Some important cell parameters have been evaluated from the plateau region of the discharge profiles and listed in Table 1 along with OCV values. All the batteries performed quite satisfactorily specially under low current drain states.

Fig. 3 Cell potential discharge profiles as a function of time: **Cell 1**: Mg/[85PEO: 15Mg (ClO₄)₂/ C+MnO₂+Electrolyte;

Cell 2: Mg/ [85PEO: 15Mg (ClO₄)₂/ C+I₂+Electrolyte;

Cell 3: Mg/ [80 PEO: 20Mg (CF₃SO₃)₂]/ C+MnO₂+Electrolyte;

Cell 4: Mg/[80PEO: 20Mg (CF₃SO₃)₂]/ C+I₂+Electrolyte;

Cell 5: Mg/[85PEO: 15Mg (ClO₄)₂]+ 5TiO₂/ C+MnO₂+Electrolyte;

Cell 6: Mg/ [85PEO: $15Mg(ClO_4)_2$] + $5TiO_2/C+I_2$ +Electrolyte; Cell 7: Mg/[80PEO: $20Mg(CF_3SO_3)_2$] + $4TiO_2(nano)/C+MnO_2$ + Electrolyte:

Cell 8: Mg/ [80PEO: $20Mg(CF_3SO_3)_2$] + $4TiO_2(nano)/$ C+I₂+ Electrolyte;

Cell 9: Mg/ [85PEO: $15Mg(ClO_4)_2$] + 3MgO(nano)/ C+MnO₂+ Electrolyte;

Cell 10: Mg/ [85PEO: 15Mg (ClO₄)₂] + 3MgO(nano)/ C+I₂+ Electrolyte;

Cell 11: Mg/ [80PEO: 20Mg(CF₃SO₃)₂] + 5MgO(nano)/ C+ MnO₂ + Electrolyte;

Cell 12: Mg/ [85PEO: $15Mg (ClO_4)_2$] + 3MgO/ C+I₂+Electrolyte.

Table 1 Some important cell parameters evaluated from the plateau region of the discharge profiles. All the cells were discharged though **100** K Ω at room temperature. (For Cell Number please refer to the caption Fig. 3).

	OCV	Current	Discharge	Specific	Specific
Cell	(Volt)	Density	Capacity	Power	Energy
		$(\mu A/cm^2)$	(µAh)	$(\mu W/g)$	(mWh/g)
Cell: 1	1.79	10.41	1046	15.32	1.15
Cell: 2	2.2	11.52	1428	15.14	1.72
Cell: 3	1.8	9.24	1220	25.92	2.59
Cell: 4	2.16	12.01	1520	25.12	2.41
Cell: 5	1.92	10.59	1420	16.13	1.61
Cell: 6	2.22	13.37	1765	24.29	2.42
Cell: 7	1.85	12.65	1670	27.33	3.28
Cell: 8	2.26	13.22	2094	29.59	3.55
Cell: 9	1.84	11.64	1560	16.90	1.69
Cell: 10	2.25	13.03	2064	20.23	2.43
Cell: 11	1.81	9.31	1230	26.59	2.66
Cell: 12	2.23	12.92	2046	27.79	3.33

4. CONCLUSION

All-Solid-State battery based on Mg²⁺-ion conducting SPE/NCPE films have been fabricated and discharged through 100 K Ω load. All the batteries performed quite satisfactorily specially under low current drain states. Based on these studies it can be concluded that these newly synthesized Mg²⁺-ion conducting SPE/ NCPE films: (the non-lithium Polymer Electrolytes) can be considered as potential alternate to Li⁺ - ion salt polymer electrolytes for all-solid-state electrochemical device applications. However, what is needed urgently is to enhance the room temperature conductivity value of these SPE/NCPE film at least by 1-3 orders of magnitude. This can possibly be achieved if we introduce Nano–Ionic effects in these systems. This work is currently in progress at present Laboratory.

REFERENCES

- D. E. Fenton, J. M. Parker, P. V. Wrigth, Polymer 14 (1973) 589.
- M. B. Armand, J. M. Chabagno, M. Diadat, 'Fast Ion Transport in Solids' (Eds.) Vashistha P., Mundy J. M. and Sheny G. K. (North Holland 1979) p. 135.
- 3. M. B. Armand, Ann. Rev. Mater. Sci. 16 (1986) 245.
- 4. M. A. Ratner, D. F. Shriver, Chem. Rev. 88 (1988)109.
- J. R. MacCallum, C. A. Vincent, (Eds.) Polymer Electrolyte Reviews, Vol. I & II (Elsevier Applied Science Publisher, London 1987 & 1989).
- 6. F. M. Gray Polymer Electrolytes: Fundamentals and Technological Applications (1991) (New York: VCH)
- 7. B. Scrosati, *Applications of Electroactive Polymers* (1993) (London: Chapman and Hall).
- P. G. Bruce, (Eds.) Solid State Chemistry, (Cambridge University Press, Cambridge 1995).
- 9. F. M. Gray, Polymer Electrolytes (Royal Society of Chemistry Monographs, Cambridge 1997).

- R. C. Agrawal, G. P. Pandey, "Solid Polymer Electrolyte: Materials designing and all-solid-state battery applications: an overview" (Topical Review), J. Phys. D: Appl. Phys. 41 (2008) 223001.
- 11. E. Quartarone, P. Murtarelli, Chem. Soc. Rev. 40 (2011) 2525.
- M. Park, X. Zhang, M. Chung, G. B. Lessa, A. Sastry, J. Power Sources xxx (2010) xxx.
- 13. Resource: Rechargeable Battery, Wikipedia (wikipedia.org/wiki/Rechargeable_battery).
- Resource: GoogleImage(<u>http://i2.cdn</u>.turner.com/ money/ dam /assets /130117090639-boeing-dreamlinerlithium-battery-monster.jpg).
- G. Girish Kumar, N. Munichandraiah, Electrochim. Acta, 44 (1999) 2663, G. Girish Kumar, N. Munichandraiah, J. Electro-analytical Chemistry, 495 (2000) 42-50.
- M. Jaipal Reddy, Peter P. Chu, Journal of Power Sources 109 (2002) 340–346; M. Jaipal Reddy, P.P. Chu / Solid State Ionics 149 (2002) 115–123.
- 17. R. C. Agrawal, Dinesh K. Sahu, Y. K. Mahipal, Rehana Ashrafi, J. Material Chemistry & Physics xxx (2013) xx-xx.
- R. C. Agrawal, Dinesh K. Sahu, J. Physical Science and Applications xx (2012) xx-xx.
- G. B. Appetecchi, F. Croce, J. Hassoun, B. Scrosati, M Salomon, F Cassel, J. Power Sources 114, 105 (2003).
- G. B. Appetecchi, J Hassoum, B Scrosati, F Croce, F Cassel, M Salomon, J. Power Sources 124, 246-253 (2003).