Thermoelectric properties of molecular nanostructures
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ABSTRACT

We use the concept of resonant tunneling to calculate
the thermopower of molecular nanosystems. It turns out
that the sign of the thermovoltage under resonant tun-
neling conditions depends sensitively on the participat-
ing molecular orbital, and one finds a sign change when
the transport channel switches from the highest occu-
pied molecular orbital to the lowest unoccupied molecu-
lar orbital. Comparing our results to recent experimen-
tal data obtained for a BDT molecule contacted with an
STM tip, we observe good agreement.
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1 INTRODUCTION

Studies of the origin of a voltage or current in nanosys-
tems in the presence of a temperature gradient are an
extremely interesting and promising area in the field
of nanotechnologies [1-3]. There are several important
possible future applications in several areas of devices,
among them the development of nanothermosensors (see,
e.g., [4]), which is especially urgent for a number of tech-
nological processes and for research in biology concern-
ing the functioning of life.

However, different from the classical description of
thermoelectric phenomena, which is already challeng-
ing enough, the necessity to apply strictly quantum-
mechanical methods in the realm of nano-objects makes
the whole problem an extremely difficult one, and a
proper theory for studying transport phenomena in the
most general setup does not yet exist. However, for the
description of most experimental realizations of thermo-
electric transport through nano-structures, one can for-
tunately make some simplifying assumptions. Usually,
one can consider the system to consist of two metal-
lic structures, which are typically very good conductors
and which we will call leads, that are spatially sepa-
rated. Hence, there will be no current flowing between
the leads. Placing an active element like a molecule
between these leads will thus induce a transport path
and, when voltage or temperature differences between
the leads are imposed, thermoelectric phenomena [5].
The coupling of the molecule and the leads will be of

tunneling type, i.e., one can usually assume that this
coupling is rather weak.

In the present paper, we develop a simple nonequilib-
rium model to descibe the stationary thermotransport
through such a nanostructure, using the idea of resonant
tunneling. Guided by the experimental findings, we ar-
gue that one can actually restrict the theory to lowest
order in the tunneling. The resulting model is rather
simple, but can be solved analytically, and the theoret-
ical results can be directly compared with experimental
data. We find a rather good agreement with experiment
and can in addition provide a more accurate description
and interpretation in one case.

2 RESONANT TUNNELING
WITH APPLIED TEMPERATURE
GRADIENT

Resonant electron tunneling through a quantum sys-
tem consisting of double potential barriers is very sen-
sitive to the position of the electronic states in the con-
stricted quantum structure [6]. This circumstance can
be used for an effective control over the tunneling pro-
cess. While it is usually challenging to contact molecules
via standard leads, using an STM tip to create break
junctions with molecules emersed on a metal surface
leads to a controlled way to generate reliable contacts.
This has been used recently for benzenedithiol (BDT),
dibenzenedithiol (DBDT) and tribenzenedithiol (TBDT)
to study thermolectric effects in the transport through
such molecules [2].

Based on the setup of the experiment in Ref. [2],
Fig 1A, we use as model a double-barrier tunneling sys-
tem with an energy profile shown schematically in Fig. 1
[7-11]. In the following, we identify the substrate with
the label “L” and the tip with “R”. The Hamiltonian de-
scribing the tunneling of electrons through such a struc-
ture can be chosen in the form

H=Hy+ Hw + Hr. (1)

The first term of this Hamiltonian

Hy = ZEL(k)“L,L,aak,L,a+ZER(k)aL,R,aak,R,a' (2)
ko ko
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Figure 1: Schematic model to study thermoelectric phenomena for a BDT molecule attached to leads. A shows the
case where the LUMO provides the resonant level, and B corresponds to a HOMO as resonant level. The energies
of the orbitals, the bias AV and the temperature difference AT are chosen to provide a setup for the thermopower

measurement, i.e., no electrical current is flowing

describes electrons in the left lead (metal surface) and in
the right one (STM tip). Because we are not interested
in the detailed properties of the leads, we assume that
these charge carriers can be taken to be quasi-particles,
and aJL’L’U(ak’L’U) and aJL’R’U(ak’R’a) are the creation
(annihilation) operators for these quasi-particle in the
surface and, respectively, tip. The dispersions are, in
the same spirit, given by e1,/g(k) = h?k? /2m, /r, where
mp/r denote the effective masses for the left and right
leads. We will assume my = mpg = m in the following
for simplicity.

The Hamiltonian Hyy describes the electronic states
on the molecule. It can be written in the form

HW = ZEQ a(];aa+HIa (3)
a

where «a labels the single-particle levels of the molecule,
and Hi denotes possible interactions. The single-particle
energies in the well depend on the applied bias AV
across the molecule and can be written as E, = €, —
eo S AV, where €, is the bare energy of the resonant
state in the quantum well, AV the potential drop across
the molecule, ¢ > 0 the elementary charge, and 8 a
factor depending on the profile of the potential barriers
(for identical barriers, 8 = 0.5). Finally, the Hamilto-
nian Hp describing the tunneling of electrons through
the barriers has the conventional form

HT = Z <Tacr6(k) 0216’000[ =+ Hc) . (4)
koa,6=L,R

Here, Tyys5(k) is the matrix element of tunneling from

the surface (respectively, the tip) to and from the molecule.

When we apply a constant external bias across the
system, a nonequilibrium steady-state electron distribu-

tion will result. We assume that the electron distribu-
tion functions in the electrodes (source, drain) are equi-
librium ones, i.e., Fermi functions, due to the large vol-
umes of these reservoirs, but their chemical potentials
and temperatures can be different. The chemical po-
tentials usually encode a voltage drop across the nano-
region. Hence, in our model, uyp = p+ Ap, ug = p, and
Ap = —egAV.

The simple setup of the system in Fig. 1 makes the
evaluation of nonequilibrium properties comparatively
simple. The important quantity entering all formula is
the density of states (DOS) po(E) for the local level in
the presence of the leads [12]. To calculate it, we need
the retarded Green’s function G4, (E) [13], from which
we can obtain the DOS as

1
W(B) = —=SN"ImG, (E .
pa(B) = =2 31 Goa (B + )

The electron distribution function f§}, (E) in the quan-
tum well is essentially nonequilibrium. It can be deter-
mined from the condition of equality of the tunneling
currents through the source and the drain. The result-
ing distribution function has the form [12]

() = 5 g B oE) + THE (B, ()

Lo(E) = T3 (E) + TR(E), (6)

where T'¢(E) and I'4(E) are the tunneling rates for
source (L) and drain (R), given by the expressions

T2(E) = Y |Taor(k)|*8(E — er(k)), (7)
ko

T%(E) = Y |Tasr(k)|*8(E — er(k)), (8)
ko
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and fr(E) and fr(E) are the quasi-particle distribu-
tion functions in the source and the drain, respectively.
They have the Fermi—Dirac form, and their temperature
dependences read

o ~1
f1/n(B) = {1 T exp [ﬁ]} , (9)

where kp is the Boltzmann constant, and 17,/ are tem-
peratures in the source and the drain, respectively.

3 DOUBLE BARRIERS
THERMOSTRUCTURES
FOR RESONANT TUNNELING

With the above formula for the distribution function,
one can straightforwardly evaluate physical quantitites.
For example, the occupancy of the molecule can be de-
termined with the help of expression [7]

Ny = —%/dE fiv (BE)ImGqy o (E).

Moreover, the net current J;; between the source and
the drain through the molecule is given by the equa-
tion [9,12]

Ja= -3 [ YalB) [Fu(B) - fa(E))pa(E) dE, (10)

where T (E) = T'¢(E)T%(E)/To(E). Since we assume
tunneling contacts, the transition rates I'g, I'? are expo-
nentially dependent on the barrier widths and heights.
Correlation effects between the electrons in a nano-struc-
ture encoded in Hy can be taken into account by means
of po(E), too [12], and will in general dramatically mod-
ify the properties [14,15]. Unfortunately, a complete
theoretical solution of this more realistic model is at
present possible in the linear response regime only (see
for example Ref. [16] for an overview). In particular,
treating thermoelectric effects is a particular challenge
as the temperature gradient across the dot cannot be
simply included into the Hamiltonian of the leads.

In the following we use the limit I' — 0, i.e. we
approximate the local Green’s function by its atomic
limit!

pa(E) ~ Co8(E — Ey), (11)

where the weights C, encode the effect of interactions
on the molecule and we take into account only the pole
with the strongest weight. In other words, we neglect
the influence of the leads on the molecule’s states, in
particular also renormalizations due to non-equilibrium.

1One could in principle also use a Lorentian form with width
& ' (E) here, but would then loose the analytical solution. Fur-
thermore, this approach would at the present level only introduce
a further unknown parameter into the calculations.

Inserting the approximation (11) into the expression
for the current we finally obtain the formula

Jua == 30 CaTa(Be) (fo(Be) ~ fa(Be)).  (12)

The distribution functions f,z(E,) are exponen-
tially dependent on the energy E,. Thus, when |E, —
E,/| > kg T, where E, denotes a neighboring molec-
ular orbital, there will be one particular energy E, for
which |E, — p| is minimal. As discussed previoulsy,
we can assume a weak tunneling coupling and a rea-
sonable strong energetic separation of the molecular or-
bitals, and hence the transport through all other or-
bitals will be exponentially suppressed compared to this
orbital and can hence be neglected. Within this approx-
imation, Eq. (12) can thus be reduced to the simple form
YTo(Ex)[fr(Ea) — fr(E,)] = 0, respectively, for small
but finite F%/R(E),

fL(Ea) - fR(Ea) =0. (13)

According to our definition, E, is the energy level
of a BDT molecule which has the smallest distance to
the chemical potential. This will either be the high-
est occupied molecular orbital (HOMO) or the lowest
unoccupied molecular orbital (LUMO). That molecule
level is, as noted before, shifted by the voltage AV as
AE = E, — eq = —eoffAV = BApu. For asymmetric
barriers we have 8 = ar/(ar + agr), where ar, and ag
are the widths of the left and right barriers, respectively.
With the explicit form for Fermi’s function (9) the so-
lution of Eq. (13) becomes

_ (6a - ,U’)
egAV = T+ AAT AT. (14)

Equation (14) has a rather interesting implication. As-
suming a positive temperature gradient, AT > 0, the
sign of the thermovoltage depends solely on the relative
position of the level contributing to the resonant tun-
neling to the chemical potential. In the case €, > p we
would observe a positive thermovoltage, while a nega-
tive will occur for ¢, < p. Note that this scenario is
valid only when |e, — | < |eg — p| for all other or-
bitals § # a. However, for |ELumo — p| = |Eromo — pl,
i.e. close to a particle-hole symmetric situation, the two
transmission channels would contribute with opposite
sign, and we would expect thermoelectric effects to be
strongly suppressed, presumably below the noise level
of the experiment. However, as the experiment shows
a clear signal, we infer that there is only one orbital
dominating the resonant tunneling contribution to the
transport. Note that this conjecture is also in agree-
ment with the general discussion in Ref. [2] following
their Eq. (4).
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Figure 2: Comparison of experimental data (blue circles
[2]) with theoretical curve (by Eq.(14)) is demonstrated

The first observation is that the experiment gives
AV < 0, i.e. according to our result we must have
€q < p. Thus, the energy level €, seen in experiment
is a HOMO, i.e. we have realised the condition shown
in Fig. 1B. In fact, the conductivity of the tunneling
structure is determined by electron holes. The detailed
comparison of the thermovoltage AV as function of AT
is shown in Fig. 2. Since AT < T =~ 300 K, Eq. (14)
can be approximated by a linear relation

eoAV = (e — p)AT/T. (15)

From the comparison with the experiment, we get an
average value of (4 — egomo)/eoT ~ 7 uV /K.

4 SUMMARY

A theoretical calculation of the transport through
nano-structures makes a full quantum-mechanical de-
scription of the system mandatory. In contrast to bulk
materials, one cannot even adopt some semiclassical ap-
proach based on, e.g., the Boltzmann equation here.
Since one also needs to take into account the inher-
ent non-equilibrium situation in many cases, solving this
problem has become one of the most challenging tasks
in modern condensed matter theory. A certain simplifi-
cation arises when one can use the concept of resonant
tunneling. This is usually possible in weakly contacted
nano-objects like molecules, and allows one to quite ac-
curately describe the thermoelectric phenomena in these
systems.

Given the complexity and in particular non-availability
of full-featured theoretical calculations off thermal equi-
librium, we believe that such analytical results — even if
they appear too simple or straightforward — are never-
theless very important steps to enhance our knowledge
about the transport through nano-structures and can
actually also serve as benchmarks to test more elabo-
rate theoretical tools to be developed.
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