AC Conductivity, Dielectric and Electric Modulus Studies of Nanocrystalline LiCoO\textsubscript{2} Particles

B.Nageswara Rao 1, M.Venkateswarlu 2, N.Satyanarayana 1*

1 Department of Physics, Pondicherry University, Pondicherry, 605014, INDIA
2 R & D, Amararaja batteries, Tirupati, 517 501, AP, INDIA
*Corresponding Author: E-mail: nallanis2011@gmail.com, Tel: +91413 2654404

ABSTRACT

Nanocrystalline LiCoO\textsubscript{2} particles were prepared using acrylamide assisted polymeric citrate process. As prepared powders were characterized using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) techniques. The electrical properties like, A.C conductivity, dielectric constant and electric modulus were studied through impedance measurements.

Keywords: Nanocrystalline LiCoO\textsubscript{2} particles, X-ray diffraction, Electrical properties, Dielectric properties.

1 INTRODUCTION

Lithium ion batteries are the major power source for portable electronic devices such as cellular phones, cameras, laptops, camcorders, i-Pods, etc [1]. LiCoO\textsubscript{2} is the most preferred positive electrode material as it is widely used in commercial lithium ion batteries [2]. It is well known that the practical capacity of LiCoO\textsubscript{2} is limited to around 140 mAhg-1; which is nearly half of it’s theoretical capacity 274 mAhg-1. LiCoO\textsubscript{2} has an ordered rock salt structure (\alpha \textendash NaFeO\textsubscript{2}) and belongs to R-3m space group [3]. Unfortunately, the power capability of LIBs is mitigated by slow diffusion in bulk materials. In order to overcome this problem, researchers have been focussing to reduce the particle size. Nanosize particles increase the surface-to-volume ratio and shorten the diffusion lengths of the carriers, which inturn can enhance the conductivity and hence, improve the power density, compared to bulk particles [4].

The preparation of LiCoO\textsubscript{2} cathode material by conventional solid state reaction method involves heating of precursor materials at high temperatures, which results in inhomogeneity, bigger crystalline size, poor stoichiometry, phase impurity, etc [5,6]. Hence, in the present work, LiCoO\textsubscript{2} particles were prepared by acryl amide assisted polymeric citrate process. The synthesized powders were characterized using X-ray powder diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) techniques. The electrical properties like, AC conductivity, dielectric and electric modulus studies were made through impedance measurements.

2 EXPERIMENTAL

LiNO\textsubscript{3}(S.d.Fine-Chem.Ltd.),Co(NO\textsubscript{3})\textsubscript{2}.6H\textsubscript{2}O(SQ grade, Qualigens), citric acid anhydrous (SQ grade,Qualigens) and acryl amide (SQ grade,Qualigens) were used for the synthesis of nanocrystalline LiCoO\textsubscript{2} powders by polymeric citrate process.

Stoichiometric quantities of metal nitrate and citric acid solutions were prepared separately and were mixed by keeping total metal ion to citric acid ratio as 1:1 under constant stirring condition. Stoichiometric amount of acryl amide solution was added to the above solution by keeping total metal ion to acryl amide ratio as 1:1. The resulting pink coloured solution was evaporated at 80 °C for 6 hours and it turned into viscous pink coloured resin. Further, the pink coloured resin was heated at 170 °C for 12 hours and the polymeric intermediate was obtained. The polymeric intermediate was grounded and calcined at 500 °C for 12 hours to obtain nanocrystalline LiCoO\textsubscript{2} powders.

Powder X-ray diffraction patterns were recorded using X’pert PRO MPD, PANalytical (Philips) X-ray powder diffractometer with Cu K\textalpha radiation of wavelength 1.54 A\textsubscript{0} at a scan rate of 2° per minute and 20 values range from 10° to 80°. FTIR spectra were recorded using shimadzu FTIR-8000 spectrometer to identify the structural coordination of the prepared sample. The measurement was carried out in the range from 400 cm-1 to 4000 cm-1 with KBr diluter. The microstructure of prepared sample was imaged using scanning electron microscopy (Hitachi, S-3400N model). The impedance spectra of the prepared sample pellet was recorded using impedance analyzer (Novacontrol, Alpha A high performance frequency analyzer). The AC conductivity, dielectric constant and electric modulus spectra were obtained from the measured impedance data.

3 RESULTS AND DISCUSSION

3.1 XRD

Powder X-ray diffraction patterns of the synthesized LiCoO\textsubscript{2} sample is shown in fig.1. From fig.1, the well defined diffraction peaks indicate the crystalline nature of the synthesized sample. The formation of phase pure LiCoO\textsubscript{2} was confirmed by comparing the observed XRD patterns with the standard JCPDS data. No additional impurity peaks were observed in the diffraction pattern.
The crystallite size of prepared sample was calculated using Scherrer’s formula

\[D = \frac{0.9\lambda}{\beta \cos \theta} \]

where, \(\lambda \) is the X-ray wavelength (1.54 Å) and \(\beta \) is the full-width at half maximum (FWHM) of the diffraction line. The average crystallite size of LiCoO\(_2\) sample is found to be 36 nm.

3.2 FTIR

FTIR spectra of the synthesized LiCoO\(_2\) sample is shown in fig.2.

Fig.2 FTIR spectra of LiCoO\(_2\) nanoparticles.

From fig.2, the bands observed at 550-560 cm\(^{-1}\), 580-610 cm\(^{-1}\) with high intensity and at 510 cm\(^{-1}\) with low intensity correspond to the asymmetric stretching modes of [CoO\(_6\)] octahedra in LiCoO\(_2\) structure [7]. Hence, FTIR results showed the formation of LiCoO\(_2\) structure and are in good agreement with XRD results.

3.3 SEM

Scanning electron (SEM) micrographs of the synthesized LiCoO\(_2\) sample is shown in fig.3.

Fig.3 SEM image of LiCoO\(_2\) nanoparticles.

From fig.3, SEM image shows the formation of agglomerated spherical nano particles of LiCoO\(_2\), having the average particle size of 370 nm (300 – 450 nm).

3.4 A.C conductivity

Fig.4 shows the conductivity (\(\sigma \)) vs. Log (\(\omega \)) plot of the synthesized LiCoO\(_2\) particles at different temperatures.

Fig.4 Plot of AC conductivity (\(\sigma(\omega) \)) vs. log of LiCoO\(_2\) Nanoparticles.

Fig.4, shows a plateau region at low frequencies, which is frequency independent and a dispersive region at high frequencies. The A.C conductivity study of LiCoO\(_2\) is found to obey Jonscher’s power law [8]. The Jonscher’s power law equation may be written as

\[\sigma(\omega) = \sigma_{DC} + A\omega^n \]

where, \(n \) is the frequency exponent in the range 0 < \(n \) < 1. The observed frequency-independent conductivity at low frequencies indicate the DC conductivity of the material. The power law feature \(\sigma(\omega) \propto A\omega^n \) is observed at high frequencies. The frequency at which dispersive region begins is called as hopping frequency (\(\omega_p \)). The extrapolation of the plateau region towards Y-axis gives the
DC conductivity of the material. It is observed that the DC conductivity of the material as well as hopping frequency (ω_p) increases with increase of temperature.

3.5 Dielectric constant

Fig.5 shows the dielectric constant (ε') vs. Log (ω) plot of the synthesized LiCoO$_2$ particles at different temperatures.

![Fig.5 Plot of dielectric constant vs. logω of LiCoO$_2$ Nanoparticles.](image)

From fig.5, it is observed that the dielectric constant of the material decreases with increase in frequency. The observed high dielectric constant at low frequencies is due to the space charge accumulation at the interface. At higher frequencies, the charged ions cannot follow the rapidly varying oscillating electric field and hence the dielectric constant decreases and becomes constant. The dielectric constant of the material increases with increase of temperature. The initial increase of the dielectric constant at very low frequencies is may be due to the inductive behavior of the material.

3.6 Electric modulus

Fig.6 shows the electric modulus (M'') vs. Log (ω) plot of the synthesized LiCoO$_2$ particles obtained at different temperatures. From fig.6, it is observed that the electric modulus value increases with frequency and becomes saturated ($M_{∞}$) at higher frequencies. The shape of each curve is asymmetric of non-Lorenzian type exhibiting a peak at the relaxation frequency (ω_{max}) with a long tail in the shorter relaxation time region [9,10]. The broadness of the curves interpret the distribution of relaxation time for distinguishable physical processes.

![Fig.6 Plot of electric modulus (M'') vs. logω of LiCoO$_2$ Nanoparticles.](image)

The change in magnitude of M''_{max} with temperature is may be due to the inductive behavior of the sample.

4 CONCLUSIONS

Nanocrystalline LiCoO$_2$ particles were synthesized using acryl amide assisted polymeric citrate process. XRD and FTIR studies confirm the formation LiCoO$_2$ phase and structure respectively. The formation of spherical nanoparticles were confirmed from SEM results. The electrical behavior of LiCoO$_2$ particles with temperature is interpreted through A.C conductivity, dielectric constant and electric modulus studies.

ACKNOWLEDGEMENT

NS is grateful to AICTE, Govt. of INDIA for providing financial support in the form of research project sanction No.:8023/BOR/RID/ RPS-174/ 2009-10,dated 31-03-2010. BNR is thankful to DST, Govt. of INDIA for awarding the INSPIRE fellowship No.: DST/INSPIRE Fellowship/2011/[241], DT: 30-11-2011, for pursuing the Doctoral degree. Authors also acknowledge CIF, Pondicherry university for using SEM facility.

REFERENCES

